請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29215完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑤明 | |
| dc.contributor.author | Chun-Yu Huang | en |
| dc.contributor.author | 黃駿宇 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:02:55Z | - |
| dc.date.available | 2008-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Ammerman, C.N., and You, S.M., “Enhancing Small-Channel Convective Boiling Performance Using a Microporous Surface Coating,” Journal of Heat Transfer, Vol. 123, No. 5, pp. 976-983, 2001.
Bergles, A.E., “Enhancement of pool boiling,” International Journal of Refrigeration, Vol. 20, No. 8, pp. 545-551, 1997. Bergles, A.E., and Kandlikar, S.G., “On the Nature of Critical Heat Flux in Microchannels,” Journal of Heat Transfer, Vol. 127, No. 1, pp. 101-107, 2005. Bowers, M.B., and Mudawar, I., “High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 321-332, 1994. Chang, J.Y., and You, S.M., “Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72,” International Journal of Heat and Mass Transfer, Vol 40, No. 18, pp. 4437-4447, 1997. Chu, R.C., “Thermal Management Roadmap Cooling Electronic Products from Handheld Device to Supercomputers,” MIT Rohsenow Symposium, May, 2003. Cieslinski, J.T., “Nucleate pool boiling on porous metallic coatings,” Experimental Thermal and Fluid Science, Vol 25, No. 7, pp. 557-564, 2002. Collier, J.G., and Thome, J.R., “Convective Boiling and Condensation,” 3rd Edition, Oxford University Press, Oxford, UK, 1994. Furberg, R., Li, S., Palm, B., Toprak, M., and Muhammed, M., “Dendritically ordered nano-particles in a micro-porous structure for enhanced boiling,” 13th International Heat Transfer Conference, NAN-07, 2006. Griffith P., and Wallis J.D., “The role of surface conditions in nucleate boiling,” Chemical Engineering Progress Symposium Series, Vol. 56, No. 30, pp. 49-63, 1960. Hwang, G.S., and Kaviany, M., “Critical heat flux in thin, uniform particle coatings,” International Journal of Heat and Mass Transfer, Vol.49, No. 5-6, pp. 844-849, 2006. Incropera, R.P., and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th Edition, John Wiley & Sons, NY, 2002. Jones, R., Pate, D., and Bhavnani, S., “Phase Change Thermal Transport in Etched Silicon Microchannel Heat Sinks,” 13th International Heat Transfer Conference, No. MPH-28, 2006. Kandlikar, S.G., “Microchannels and Minichannels-History, Terminology, Classifiation and Current Research Needs,” International Conference on Microchannels and Minichannels, April 24-25, No. ICMM2003-1070, 2003. Kandlikar, S.G., Kuan, W.K., Willistein, D.A., and Borrelli, J., “Stabilization of Flow Boiling an Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites,” Journal of Heat Transfer, Vol. 128, No. 4, pp. 389-396, 2006. Kew, P.A., and Cornwell, K., “Correlations for Prediction of Boiling Heat Transfer in Small Diameter Channels,” Applied Thermal Engineering, Vol. 17, No. 8–10, pp. 705–715, 1997. Kosar, A., Kuo, C.J., and Peles, Y., “Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities,” International Journal of Heat and Mass Transfer, Vol. 48, No. 23-24, pp. 4867-4886, 2005. Lee, J., and Mudawar, I., “Two-Phase Flow in High-Heat-Flux Microchannel Heat Sink for Refrigeration Cooling Applications: Part II-Heat Transfer Characteristics,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 941–955, 2005. Lockhart, R.W., and Martinelli, R.C., “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes,” Chemical Engineering Progress, Vol. 45, No. 1, pp. 39-48, 1949. Mehendal, S.S., Jacobi, A.M., and Shah, R.K., “Fluid Flow and Heat Transfer at Micro- and Meso-Scales with Application to Heat Exchanger Design, Applied Mechanics Reviews, Vol.53, No.7, pp.175–193, 2000. Mudawar, I., “Assessment of High-Heat-Flux Thermal Management Schemes,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 122-141, 2001. Peng, X.F., and Wang, B.X., “Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 36, No. 14, pp. 3421-3427, 1993. Qu, W., and Mudawar, I., “Flow Boiling Heat Transfer in Two-phase Micro-Channel Heat Sinks-I: Experimental Investigation and Assessment of Correlation Methods, International Journal of Heat and Mass Transfer, Vol. 46, pp.2755–2771, 2003. Ravigururajan, T.S., “Impact of Channel Geometry on Two-phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers,” Journal of Heat Transfer, Vol. 120, pp. 485–491, 1998. Ribatski, G., and Thome, J.R., “Nucleate boiling heat transfer of R134a on enhanced tubes,” Applied Thermal Engineering, Vol. 26, No. 10, pp. 1018-1031, 2006. Scurlock, R.G., “Enhanced Boiling Heat Transfer Surfaces,” Cryogenics, Vol. 35, No. 4, pp. 233-237, 1995. Steinke, M.E., and Kandlikar, S.G., “An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels,” Journal of Heat Transfer, Vol. 126, No. 4, pp. 518-526, 2004. Tehver, J., “Influence of Porous Coating on the Boiling Burnout Heat Flux,” Recent Advances in Heat Transfer, pp. 231-242, 1992. Thome, J.R., “Enhanced boiling heat transfer,” Hemisphere Publisher Corporation, New York, USA, 1990. Thome, J.R., “Boiling in Microchannels: a Review of Experiment and Theory,” International Journal of Heat and Fluid Flow, Vol. 25, pp. 128–139, 2004. Tuckerman, D.B., and Pease, R.F.W., “High-Performance Heat Sinking for VLSI,” IEEE Electronic Device Letters, EDL-2, pp.126-129, 1981. Wambsganss, M.W., France, D.M., Jendrzejczyk, J.A., and Tran, T.N, “Boiling Heat Transfer in a Horizontal Small Diameter Tube,” Journal of Heat Transfer, Vol. 115, pp. 963–972, 1993. Wang, B.X., and Peng, X.F., “Experimental investigation on liquid forced- convection heat transfer through microchannels,” International Journal of Heat and Mass Transfer, Vol. 37, No. Suppl 1, pp. 73-82, 1994. Warrier, G.R., Dhir, V.K., and Momoda, L.A., “Heat Transfer and Pressure Drop in Narrow Rectangular Channels,” Experimental Thermal and Fluid Science,” Vol. 26, pp. 53–64, 2002. Webb, R.L., “Nucleate boiling on porous coated surfaces,” Heat Transfer Engineering, Vol. 4, No. 3-4, pp. 71-82, 1983. Webb, R.L., “Next Generation Devices for Electronic Cooling With Heat Rejection to Air,” Journal of Heat Transfer, Vol. 127, No. 1, pp. 2-10, 2005a. Webb, R.L., “Principles of enhanced heat transfer,” 2nd ED, John Wiley & Sons, Inc., New York, 2005b. Wojtan, L., Revellin, R., and Thome, J.R., “Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel,” Experimental Thermal and Fluid Science, Vol. 30, No. 8, pp. 765-774, 2006. Wu, W., Du, J. H., Hu, X. J., and Wang, B. X., “Pool boiling heat transfer and simplified one-dimensional model for prediction on coated porous surfaces with vapor channels,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 1117-1125, 2002. Zhang, L., Wang, E.N., Koo, J.M., Jiang, L., Goodson, K.E., Santiago, J.G., and Kenny, T.W., “Enhanced Nucleate Boiling in Microchannels,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 89-92, 2002. Zivi, S.M., “Estimation of Steady-State Stem Void-Fraction by means of the Principle of Minimum Entropy Production,” Journal of Heat Transfer, Vol. 86, pp.247–252, 1964. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29215 | - |
| dc.description.abstract | 微流道蒸發器具有體積小、工質需求量低、高熱傳係數、高臨界熱通量等優點,而國內外在這方面的研究也有很多,但大多集中在沸騰熱傳機制、流動不穩定性、壓降分析等方面,而對於其沸騰熱傳增強的研究則很少。因此,本研究利用多孔性結構能提供較多有效成核址及較大內部交錯面積的優點,將其與微流道蒸發器結合,以期能提升傳統微流道蒸發器之熱傳性能。
本研究以平均粒徑30μm的樹枝狀銅粉做為燒結用粉末,並藉由調整燒結溫度製作出孔隙度41%~66%的多孔性結構微流道蒸發器,其流道的水力直徑為292μm~327μm。實驗以R-134a為工質,操作壓力為800kpa,並藉由改變流量的方式(100 ml/min~166 ml/min)針對不同孔隙度進行測試。 實驗結果指出,傳統微流道蒸發器的熱傳係數會受到熱通量、乾度以及流量的影響,其中熱傳係數會隨著的乾度以及熱通量增加呈現先上升後下降的趨勢,而隨著流量的增加其峰值會越早發生,且整體的熱傳性能也會隨著流量的增加而上升。而多孔性結構微流道蒸發器的熱傳係數則會受到熱通量 、乾度、流量以及孔隙度的影響,其中熱傳係數也是隨著乾度以及熱通量的增加呈現先上升後下降的趨勢,而當孔隙度與流量越高時其峰值越早發生。在熱傳增強方面,孔隙度越高其增強幅度越大,以孔隙度66%之多孔性結構微流道蒸發器增強幅度最大,熱傳性能為傳統微流道蒸發器的1~5倍。在臨界熱通量方面,與傳統微流道蒸發器的趨勢相同,流量越大時其臨界熱通量也越高,臨界熱通量可達93W/cm2~143 W/cm2,提升幅度為5%~23%。 在壓降方面,相較於傳統微流道蒸發器壓降除了隨著流量以及熱通量的增加而上升外,多孔性結構微流道蒸發器的壓降也會隨孔隙度的增加而上升。其壓降提高約30%到260%,最高的壓降為孔隙度66%之多孔性結構微流道蒸發器在流量為166 ml/min時,壓降為30 kpa。 | zh_TW |
| dc.description.abstract | Microchannel evaporator has the advantages of compactness, minimal coolant usage, high heat transfer coefficient, and high critical heat flux. Most of recent researches emphasize heat transfer mechanism, flow instability, and pressure drop analysis but not too much focuses on heat transfer enhancement in microchannel evaporator. For the purpose of enhancing boiling heat transfer in microchannel evaporator, this research takes advantage of porous media with more nucleation sites and larger inner areas to produce microchannels.
This study manufacture microchannels with porosity range between 41% and 66% by adjusting the sintered temperature and we use dendritic copper powders in average particle size of 30μm. The hydraulic diameter’s range of these porous microchannels is 292μm to 327μm. The working fluid used is refrigerant R-134a, operating pressure is 800 kpa, and volume flow rate ranges from 100 ml/min to 166 ml/min. The result reveals that heat transfer coefficient of solid microchannel evaporator is primarily affected by heat flux、quality and volume flow rate. As quality and heat flux increase, the heat transfer coefficient will rise up first and then go down. The peak value will happen earlier as long as flow rate higher and the overall boiling heat transfer capacity of solid microchannel evaporator is better in higher volume flow rate. The same trend can be observed in porous microchannel evaporator. Furthermore, with the increase of the porosity, the peak value will be shown up earlier. In the aspects of boiling heat transfer enhancement, the porous microchannel evaporator with the highest porosity of 66% performs best in heat transfer enhancement and the heat transfer enhancement ratios are 1 to 5 times, comparing with solid microchannel evaporator. As far as CHF is concerned, porous microchannel evapoator have the same tendency of solid microchannel evaporator. CHF will go higher as volume flow rate increases. CHF can reach a value of 93W/cm2 to 143W/cm2 and it is enhanced 5% to 23%. With the same of characteristics between solid and porous microchannel evaporator, that pressure drop rises with the increase of volume flow rate and heat flux, the latter’s pressure drop will rise up around 30% to 260% as porosity increases. When the volume flow rate is 166ml/min, the highest pressure drop happens to porous microchannel evaporator with porosity of 66% and it is 30kpa. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:02:55Z (GMT). No. of bitstreams: 1 ntu-96-R94522310-1.pdf: 2495583 bytes, checksum: ec71d955fa694a87529881aeee8e4f95 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 x 第一章 緒論 1 1.1研究動機與背景 1 1.2文獻回顧 4 1.2.1微流道蒸發器 4 1.2.2沸騰熱傳增強 8 1.3研究目的 11 第二章 實驗原理與理論分析 12 2.1微流道尺寸的界定 12 2.2微流道內的沸騰熱傳現象 14 2.3微流道內的壓降現象 16 2.4沸騰熱傳增強 19 2.4.1沸騰熱傳增強方法 19 2.4.2多孔性結構沸騰熱傳增強機制 20 第三章 具多孔性結構微流道蒸發器之設計與製作 22 3.1具多孔性結構微流道蒸發器之製作 23 3.1.1燒結製作設備 23 3.1.2金屬粉末的選擇 24 3.1.3模具設計 27 3.1.4燒結厚度設定 28 3.2多孔性結構參數量測 29 3.2.1孔隙度 29 3.2.2有效孔徑 30 3.3具多孔性結構微流道蒸發器之參數設計 32 第四章 實驗設備與方法 34 4.1測試系統設計 34 4.1.1迴路系統 34 4.1.2測試段 37 4.1.3實驗工質 39 4.2實驗步驟 40 4.2.1實驗預備工作 40 4.2.2測試步驟 40 4.3實驗數據分析 41 4.3.1壁面過熱度的計算 41 4.3.2熱傳係數的計算 43 4.3.3乾度的計算 43 4.4實驗參數設計 44 4.5誤差分析 45 4.5.1熱通量之誤差 46 4.5.2壁面過熱度之誤差 47 4.5.3熱傳係數之誤差 48 第五章 結果與討論 49 5.1沸騰熱傳 49 5.1.1沸騰曲線 49 5.1.2沸騰熱傳係數 53 5.1.3沸騰熱傳增強 58 5.1.4沸騰熱傳現象總結 63 5.2流動壓降 64 第六章 結論與建議 68 6.1結論 68 6.2建議 70 參考文獻 71 附錄 77 | |
| dc.language.iso | zh-TW | |
| dc.title | 具多孔性結構微流道蒸發器之熱傳增強研究 | zh_TW |
| dc.title | Enhanced Boiling Heat Transfer in Sintered Microchannels with Porous Media | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉君愷,吳聖俊 | |
| dc.subject.keyword | 微流道,沸騰熱傳增強,多孔性結構, | zh_TW |
| dc.subject.keyword | microchannel,Enhanced boiling,porous media, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
