Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29172
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorShih-Hsiang Loen
dc.contributor.author羅仕翔zh_TW
dc.date.accessioned2021-06-13T00:44:30Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation[1] L. Breiman, J. H. Friedman, R. Olshen, and C. Sotne. Classification and Regression Trees.
Wadsworth, Belmont, 1984.
[2] E. Brown, T. Brailsford, T. Fisher, A. Moore, and H. Ashman. Reappraising Cognitive Styles in
Adaptive Web Applications. Proc. of the 15th International World Wide Web Conference, 2006.
[3] N. A. R. Center. Introduction to IND Version 2.1. GA23-2475-02 edition, 1992.
[4] P. Chesseman, J. Kelly, M. Self, and et al. AutoClass: A Bayesian classification system. In 5th
Int’l Conf. on Machine Learning. Morgan Kaufman, 1988.
[5] P. A. Chou. Optimal Partitioning for Classification and Resgression Trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 13, No 4, 1991.
[6] EXIF. http://www.exif.org/.
[7] U. Fayyad. On the Induction of Decision Trees for multiple Concept Learning. PhD thesis, The
University of Michigan, Ann arbor, 1991.
[8] U. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification
learning. In Proc. of the 13th International Joint Conference on Artificial Intelligence,
1993.
[9] M. Feng, N. T. Heffernan, and K. R. Koedinger. Addressing the Testing Challenge with a Web-
Based E-Assessment System that Tutors as it Assess. Proc. of the 15th International World Wide
Web Conference, 2006.
[10] Y. Flickr. http://www.flickr.com/.
[11] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Morgan
Kaufmann, 1989.
[12] T. H. Haveliwala. Topic-Sensitive PageRank. Proc. of the 11th International World Wide Web
Conference, 2002.
[13] G. Jeh and J. Widom. Scaling Personalized Web Search. Proc. of the 12th International World
Wide Web Conference, 2003.
[14] J. Kelinberg. Authoritative sources in a hyperlinked environment. Proc. of ACM-SIAM Symposium
on Discrete Algorithms, 1998.
[15] C.-C. Lin and M.-S. Chen. VIPAS: Virtual Link Powered Authority Search in the Web. Proceedings
of the 29th VLDB Conference, Berlin, Germany, 2003.
[16] M. manager on Google map. http://www.google.com/apis/maps/documentation/.
[17] M.Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In EDBT
96, Avignonm, France, 1996.
[18] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In Int’l Conference
on Knowledge Discovery in Databases and Data Mining, 1995.
[19] D. Michie, D. Spiegelhalter, and C. Taylor. Machine Learning, Neural and Statistical Classification.
Ellis Horwood, 1994.
[20] L. Page. PageRank: Bringing order to the Web. Stanford Digital Libraries Working Paper, 1997.
[21] G. Picasa. http://picasa.google.com/.
[22] O. D. Project. http://domz.org/.
[23] J. Quinlan. Induction of decision trees. Machine Learning, 1986.
[24] J. Quinlan and R. L. Rivest. Inferring decision trees using minimum description length principle.
Information and Computtation, 1989.
[25] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[26] F. Radlinski and T. Joachims. Query Chains: Learning to Rank from Implicit Feedback. Proceedings
of the Eleventh ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD’05), 2005.
[27] R. Rastogi and K. Shim. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning.
Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, 1998.
[28] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge,
1996.
[29] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In
Proc. of the VLDB Conference, Bombay, India, 1996.
[30] Zooomr. http://beta.zooomr.com/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29172-
dc.description.abstractA pervasive web application is a server providingmany web services for its registered users. Nowadays,
three of basic services that a typical pervasive web application offers are membership management,
search service and map-enabled photo service. In this thesis, we design a data mining framework
composed of three different data mining techniques to improve the performance of three services. In
order to improve the performance of membership management, in the second chapter, we develop a
categorical decision tree classifier to classify users efficiently. It noted that the data of user profiles has
an unique phenomenon. Its characteristic is that few attributes of user profiles have higher information
gains to distinguish users. By exploiting this characteristic that a traditional decision tree classifier does
not consider, our designed classifier can reduce the execution time in generating a decision tree for user
classification. As a result, the decision tree generated by our classifier can identify users efficiently
for special marketing needs of an advertisement. For the improvement of a search service, in the third
chapter, we propose a sequential web search algorithm that leverages the sequential queries issued
by users to search the required information. Compared with previous works, our approach uses the
additional feedback data on result pages of sequential queries where prior works only use feedback
data of a query. Thus, our approach can provide a better ranking of result pages for sequential queries.
For the efficiency of retrieving geotagged photos, in the fourth chapter, we design a clustering algorithm
that incrementally clusters geotagged photos in accordance to thresholds of different scales. Compared
with other applications, we show the photo clusters instead of all photos where the number of photo
clusters is much less than that of all photos. As a result, the performance of map-enabled photo service
is improved efficiently.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:44:30Z (GMT). No. of bitstreams: 1
ntu-96-F86921019-1.pdf: 3068970 bytes, checksum: 74914b7449376f7f11e55b26418319bf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . 1
1.2 Overview of the Dissertation . . . . 3
1.2.1 Inference Based Classifier: Efficient Construction of Decision Trees for Sparse
Categorical Attributes . . . . . . . . . 3
1.2.2 Effective Sequential Web Search with Personal Page Eigenvectors . . . . . . . 4
1.2.3 Geotagged Photos Clustering Algorithm for of aMap-Enabled PhotoWeb Service 5
1.3 Organization of the Dissertation . . . . . 5
2 Inference Based Classifier: Efficient Construction of Decision Trees for Sparse Categorical
Attributes 6
2.1 Introduction . . . .. . . . . . . . . . . . 6
2.2 Preliminaries . . . . . . . . . . . . . . . 9
2.3 Inference Based Classifier . . . . . . . . 10
2.3.1 Algorithm of IBC . . . . . . . . . . . . 10
2.4 PerformanceStudies . . . . . .. . . . . . 14
2.4.1 Real-life Datasets . . . . .. . . . 15
2.4.2 Experiment One: Classification Accuracy . . . . . . . 15
2.4.3 Experiment Two: Execution Time in Scale-Up Experiments for data set of
sparse categorical attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Effective SequentialWeb Search with Personal Page Eigenvectors 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Incremental Personal HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 ReviewofHITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 IPHITSAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 SystemFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Design of a Search Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Design of Feedback Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Design of Ranking Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 System Architecture of TOP Platform . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Geotagged Photos Clustering Algorithm for of a Map-Enabled PhotoWeb Service 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 ProposedFrameworkof aMap-EnabledPhotoWebService . . . . . . . . . . 46
4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Geotagged Photo Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 UsageScenario1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 UsageScenario2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.3 Design of the Client Program . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.4 Design of the Server Program . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.5 Design of an Incremental Framework . . . . . . . . . . . . . . . . . . . . . . 52
4.4.6 photo Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.7 Design of User Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . 52
4.4.8 Design of a Map Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Experimential System Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.1 The Architecture of a Client-SideProgram . . . . . . . . . . . . . . . . . . . 54
4.5.2 The Architecture of a Server-SideProgram . . . . . . . . . . . . . . . . . . . 54
4.6 Scenario of Data Synchronous Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.1 On-Line Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Off-Line Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.1 The user-interface of the client-program . . . . . . . . . . . . . . . . . . . . . 58
4.7.2 The user-interface of the server-program. . . . . . . . . . . . . . . . . . . . . 64
4.7.3 The Experimental Result of DisplayingDifferentphotoClusters . . . . . . . . 64
4.7.4 The Experimental Result of DisplayingDifferentMapScales . . . . . . . . . . 66
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Conclusions 75
dc.language.isoen
dc.subject經緯度叢集法zh_TW
dc.subject個人化搜尋zh_TW
dc.subject決策樹zh_TW
dc.subject資訊勘測zh_TW
dc.subjectpervasive applicationsen
dc.subjectgeotagged clusteringen
dc.subjectpersonalized searchen
dc.subjectdecision treeen
dc.subjectdata miningen
dc.title應用於廣泛網路應用之資訊勘測zh_TW
dc.titleMining Framework for Pervasive Applicationsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖婉君,陳孟彰,李瑞庭,呂永和,楊德年
dc.subject.keyword資訊勘測,決策樹,個人化搜尋,經緯度叢集法,zh_TW
dc.subject.keywordpervasive applications,data mining,decision tree,personalized search,geotagged clustering,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved