請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國 | |
| dc.contributor.author | Wei-Ting Chen | en |
| dc.contributor.author | 陳偉庭 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:43:27Z | - |
| dc.date.available | 2008-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | [1] International Technology Roadmap for Semiconductor, 2004 Update
Semiconductor Industry Association. [2] International Technology Roadmap for Semiconductor, 2004 Update Semiconductor Industry Association. [3] A.Nara; N.Yasuda; H.Satake, and A.Toriumi; “Applicability Limits of the Two-frequency Capacitance Measurement Technique for the Thickness Extraction of Ultrathin Gate Oxide,” IEEE Trans. On Semicon. Manufacturing, Vol. 15, pp. 209-213, 2002. [4] C. H. Chen; Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, L. G. Yao, S. C. Chen, C. H. Yu, and M. S. Liang, “Determination of Deep Ultrathin Equivalent Oxide Thickness (EOT) From Measuring Flat-Band C-V Curve,” IEEE Transactions on Electron Devices, Vol. 49, pp. 695-698, 2002. [5] Wu, W. H. Tsui, B. Y. Huang, Y. P. Hsieh, F. C. Chen, M. C. Hou, Y. T. Jin, Y. Tao, H. J. Chen, S. C. Liang, M. S. ” Two-frequency C-V correction using five-element circuit model for high-k gate dielectric and ultra-thin oxide,” Electron Device Letters, IEEE, Vol. 27, Issue 5, pp. 399 – 401, 2006. [6] Kevin J. Yang and Cheming Hu, “MOS Capacitance Measurements for High- Leakage Thin Dielectrics,” IEEE Trans. Electron Devices, pp. 1500-1501, 1999. [7] J. C. Gelpey, P. O. Stump, and J. W. Smith, “Process Control for a Rapid Optical Annealing System,” Mat. Res. Soc. Symp. Proc., vol.52, pp. 199, 1986 [8] J. Nulman, “In-situ Processing of Silicon Dielectrics by Rapid Thermal Processing : Cleaning, Growth, and Annealing,” Mat. Res. Soc. Symp. Proc., Vol. 92, pp. 141, 1987. [9] K. Rim, J. L. Hoyt, J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFETs,” Electron Devices, IEEE Transactions on Volume 47, Issue 7, pp. 1406-1415, July 2000. [10] D. K. Nayak, K. Goto, A. Yutani, J. Murota, Y. Shiraki, “High-mobility strained-Si p-MOSFETs,” Electron Devices, IEEE Transactions on Volume 43, Issue 10, pp.1709-1716, Oct. 1996. [11] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” Electron Devices, IEEE Transactions on Volume 49, Issue 12, pp.2237-2243, Dec. 2002. [12] S. Maikap, C. Y. Yu, S. R. Jan, M. H. Lee, C. W. Liu, “Mechanically strained-Si n-MOSFETs,” Electron Devices Letter, IEEE Transactions on Volume 25, Issue 1, pp.40-42, Jan. 2004. [13] E. H. Nicollian and J. R. Brews, “Interface traps: bond models” MOS Physics and Technology, pp.823, 1981. [14] P. M. Lenahan, J. J. Mele, J. P. Campbell, A. Y. Kang, R. K. Lowry, D. Woodbury, S. T. Liu, and R. Weimer, “Direct experimental evidence linking silicon dangling bond defects to oxide leakage currents” IEEE International, Reliability Physics Symposium, pp. 150-155, 2001 [15] Tomasz Brozek, Eric B. Lum, and Chand R. Viswanathan, “Oxide thickness dependence of hole trap generation in MOS structures under high-field electron injection,” Microelectronic Engineering 36, pp. 161-164, 1997. [16] B. J. Mrstik, V. V. Afanas’ev, A. Stesmans, and P. J. McMarr, “Relationship between hole trapping and oxide density in thermal grown SiO2,” Microelectronic Engineering 48, pp. 143-146, 1999. [17] D. J. DiMaria, “Hole trapping, substrate currents, and breakdown in thin silicon dioxide film (in FETs)” Electron Device Letters, IEEE, Volume 16, Issue 5, pp. 184-186, May 1995. [18] P. P. Apte, K. C. Saraswat, “Correlation of trap generation to charge-to breakdown (Qbd): a physical-damage model of dielectric breakdown,” Electron Devices, IEEE Transactions on Volume 41, Issue 9, pp. 1595-1602, Sept. 1994. [19] Szu-Wei Huang,Jenn-Gwo Hwo, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing,” Electron Devices, IEEE Transaction on Volume 50, Issue 7, pp. 1658-1664, July 2003. [20] Zhi-Hao Chen, Szu-Wei Huang, Jenn-Gwo Hwu, “Electrical characteristics of ultra-thin gate oxides (<3 nm) prepared by direct current superimposed with alternating-current anodization,” Solid-State Electronics 48, pp.23-28, 2004. [21] Wei-Jian Liao, Yi-Lin Yang, Shun-Cheng Chuang, and Jenn-Gwo Hwu, “Growth-then-anodization technique for reliable ultra-thin gate oxides,” Journal of the electrochemical society, 151 (9) G549-G553, 2004. [22] G. E. Moore, “Progress in digital integrated circuit,” IEDM Tech. Dig., pp. 11, 1975. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29155 | - |
| dc.description.abstract | 當金氧半元件的尺寸日漸縮小,矽氧化層的厚度也隨之變的更薄,但是卻
被要求提供更高的抵擋電流的能力,因此,如何提升二氧化矽介電層的品質,已 經演變成一個重要的課題。然而,大量增加的功率密度及電流密度造成了熱效應 和應力的問題更加嚴重。在這篇論文中,我們研究在金氧半元件處在高溫的環境 中受到機械應力之後,對其電子特性的影響,並且探討在不同的厚度及不同的生 長機制下,形變溫度施壓對氧化層所造成的影響,希望藉由這些測試,來改善二 氧化矽超薄閘極氧化層的品質。經由實驗我們發現,適當的伸張形變以及熱效 應,會增進金氧半元件的氧化層的品質,如漏電流密度及崩潰電壓…等電特性在 經過伸張形變溫度施壓之後都獲得了改善,而我們認為,此一改善是由於伸張形 變溫度施壓減少了矽分子和二氧化矽分子之間晶格的不匹配,而造成矽基板和二 氧化矽之間的界面鍵結更加完美,才能使其電特性得到這麼大的改善。透過觀察 N 型基版的金氧半電容元件,我們發現其閘極電容值在低頻率測量時會出現負 值,在此篇論文中,我們也對此一現象做出種種的分析,並根據這些分析,我們 推測負值電容的發生原因是和閘極的漏電流有關。而透過上述的形變溫度施壓處 理,元件的漏電流減小了,同樣的,負電容值再經過形變溫度處理後也被大幅的 縮小。 | zh_TW |
| dc.description.abstract | With the scaling of MOS devices, the thickness of oxides becomes thinner.
Nevertheless, dielectrics are requested to have higher ability to withstand the current. Therefore, it becomes an important topic to promote the quality of silicon-dioxide dielectrics. However, the increasing of power densities cause thermal and stress issue more seriously. In this thesis, we studied the effects of strain-temperature stress on the electrical characteristics of MOS devices with gate oxides grown by different techniques, and tried to promote the oxide quality by the proposed method. From the experimental results, we found that suitable tensile strain-temperature stress would promote the quality of MOS gate oxides. The electrical characteristics on tensile strain-temperature stress are investigated. While observing the C-V characteristics of MOS (n) capacitors, we found that the gate capacitance came to negative at low measured frequency. We infer the phenomenon is related to the gate leakage current by kinds of analyses. Thus, after tensile strain-temperature stress, the negative capacitance phenomenon can be reduced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:43:27Z (GMT). No. of bitstreams: 1 ntu-96-R94943128-1.pdf: 2742857 bytes, checksum: f61525e31775b8fe420fa7878537eaed (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abstract (Chinese)……………………………………………...........I
Abstract (English)..…………………………………………………..II Contents……………………………………………………………....III Figure Captions…………………………………………………...…IV Chapter 1 Introduction 1-1 Motivation of This Work…………………………………..1 1-2 Measurement Tools and Analysis Models of MOS Capacitors………………………………………………….3 1-3 Rapid Thermal Processing System………………………...6 1-4 Anodization Technique…………………………………….7 Chapter 2 Effects on MOS Capacitors with Ultra-thin Gate Oxides under Strain-Temperature Stress 2-1 Introduction………………………………………………13 2-2 Experimental Setup………………………………………14 2-3 Result and Discussion……………………………………17 2-3-1 RTP Samples…………………………….................17 2-3-2 Tilted Cathode Anodization Samples……………...19 2-4 Summary…………………………………………………22 Chapter 3 Negative Capacitance Phenomenon in MOS (N) C-V Characteristics 3-1 Introduction………………………………………………38 3-2 Observation and Discussion...…………………………....39 3-3 Summary…………………………………………………45 Chapter 4 Conclusions and Future Work 4-1 Conclusions………………………………………………56 4-2 Future work………………………………………………57 References…………………………………………………….58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 應力 | zh_TW |
| dc.subject | 金氧半元件 | zh_TW |
| dc.subject | 超薄氧化層 | zh_TW |
| dc.subject | Ultra-thin oxides | en |
| dc.subject | stress | en |
| dc.subject | MOS capacitors | en |
| dc.title | 形變溫度施壓處理對超薄閘極氧化層金氧半元件
特性影響之研究 | zh_TW |
| dc.title | Investigation of Strain-Temperature Stress Effects
on the Characteristics of MOS Capacitors with Ultra-thin Gate Oxides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭宇軒,毛明華 | |
| dc.subject.keyword | 金氧半元件,超薄氧化層,應力, | zh_TW |
| dc.subject.keyword | MOS capacitors,Ultra-thin oxides,stress, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
