Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡振國
dc.contributor.authorWei-Ting Chenen
dc.contributor.author陳偉庭zh_TW
dc.date.accessioned2021-06-13T00:43:27Z-
dc.date.available2008-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation[1] International Technology Roadmap for Semiconductor, 2004 Update
Semiconductor Industry Association.
[2] International Technology Roadmap for Semiconductor, 2004 Update
Semiconductor Industry Association.
[3] A.Nara; N.Yasuda; H.Satake, and A.Toriumi; “Applicability Limits of the
Two-frequency Capacitance Measurement Technique for the Thickness Extraction
of Ultrathin Gate Oxide,” IEEE Trans. On Semicon. Manufacturing, Vol. 15, pp.
209-213, 2002.
[4] C. H. Chen; Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, L. G. Yao,
S. C. Chen, C. H. Yu, and M. S. Liang, “Determination of Deep Ultrathin
Equivalent Oxide Thickness (EOT) From Measuring Flat-Band C-V Curve,”
IEEE Transactions on Electron Devices, Vol. 49, pp. 695-698, 2002.
[5] Wu, W. H. Tsui, B. Y. Huang, Y. P. Hsieh, F. C. Chen, M. C. Hou, Y. T. Jin, Y. Tao,
H. J. Chen, S. C. Liang, M. S. ” Two-frequency C-V correction using five-element
circuit model for high-k gate dielectric and ultra-thin oxide,” Electron Device
Letters, IEEE, Vol. 27, Issue 5, pp. 399 – 401, 2006.
[6] Kevin J. Yang and Cheming Hu, “MOS Capacitance Measurements for High-
Leakage Thin Dielectrics,” IEEE Trans. Electron Devices, pp. 1500-1501, 1999.
[7] J. C. Gelpey, P. O. Stump, and J. W. Smith, “Process Control for a Rapid Optical
Annealing System,” Mat. Res. Soc. Symp. Proc., vol.52, pp. 199, 1986
[8] J. Nulman, “In-situ Processing of Silicon Dielectrics by Rapid Thermal
Processing : Cleaning, Growth, and Annealing,” Mat. Res. Soc. Symp. Proc., Vol.
92, pp. 141, 1987.
[9] K. Rim, J. L. Hoyt, J. F. Gibbons, “Fabrication and analysis of deep submicron
strained-Si n-MOSFETs,” Electron Devices, IEEE Transactions on Volume 47,
Issue 7, pp. 1406-1415, July 2000.
[10] D. K. Nayak, K. Goto, A. Yutani, J. Murota, Y. Shiraki, “High-mobility
strained-Si p-MOSFETs,” Electron Devices, IEEE Transactions on Volume 43,
Issue 10, pp.1709-1716, Oct. 1996.
[11] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, S. Kimura, “Performance
enhancement of strained-Si MOSFETs fabricated on a
chemical-mechanical-polished SiGe substrate,” Electron Devices, IEEE
Transactions on Volume 49, Issue 12, pp.2237-2243, Dec. 2002.
[12] S. Maikap, C. Y. Yu, S. R. Jan, M. H. Lee, C. W. Liu, “Mechanically strained-Si
n-MOSFETs,” Electron Devices Letter, IEEE Transactions on Volume 25, Issue
1, pp.40-42, Jan. 2004.
[13] E. H. Nicollian and J. R. Brews, “Interface traps: bond models” MOS Physics
and Technology, pp.823, 1981.
[14] P. M. Lenahan, J. J. Mele, J. P. Campbell, A. Y. Kang, R. K. Lowry, D. Woodbury,
S. T. Liu, and R. Weimer, “Direct experimental evidence linking silicon
dangling bond defects to oxide leakage currents” IEEE International, Reliability
Physics Symposium, pp. 150-155, 2001
[15] Tomasz Brozek, Eric B. Lum, and Chand R. Viswanathan, “Oxide thickness
dependence of hole trap generation in MOS structures under high-field electron
injection,” Microelectronic Engineering 36, pp. 161-164, 1997.
[16] B. J. Mrstik, V. V. Afanas’ev, A. Stesmans, and P. J. McMarr, “Relationship
between hole trapping and oxide density in thermal grown SiO2,”
Microelectronic Engineering 48, pp. 143-146, 1999.
[17] D. J. DiMaria, “Hole trapping, substrate currents, and breakdown in thin silicon
dioxide film (in FETs)” Electron Device Letters, IEEE, Volume 16, Issue 5, pp.
184-186, May 1995.
[18] P. P. Apte, K. C. Saraswat, “Correlation of trap generation to charge-to
breakdown (Qbd): a physical-damage model of dielectric breakdown,” Electron
Devices, IEEE Transactions on Volume 41, Issue 9, pp. 1595-1602, Sept. 1994.
[19] Szu-Wei Huang,Jenn-Gwo Hwo, “Electrical characterization and process control
of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization
followed by furnace annealing,” Electron Devices, IEEE Transaction on Volume
50, Issue 7, pp. 1658-1664, July 2003.
[20] Zhi-Hao Chen, Szu-Wei Huang, Jenn-Gwo Hwu, “Electrical characteristics of
ultra-thin gate oxides (<3 nm) prepared by direct current superimposed with
alternating-current anodization,” Solid-State Electronics 48, pp.23-28, 2004.
[21] Wei-Jian Liao, Yi-Lin Yang, Shun-Cheng Chuang, and Jenn-Gwo Hwu,
“Growth-then-anodization technique for reliable ultra-thin gate oxides,” Journal
of the electrochemical society, 151 (9) G549-G553, 2004.
[22] G. E. Moore, “Progress in digital integrated circuit,” IEDM Tech. Dig., pp. 11,
1975.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29155-
dc.description.abstract當金氧半元件的尺寸日漸縮小,矽氧化層的厚度也隨之變的更薄,但是卻
被要求提供更高的抵擋電流的能力,因此,如何提升二氧化矽介電層的品質,已
經演變成一個重要的課題。然而,大量增加的功率密度及電流密度造成了熱效應
和應力的問題更加嚴重。在這篇論文中,我們研究在金氧半元件處在高溫的環境
中受到機械應力之後,對其電子特性的影響,並且探討在不同的厚度及不同的生
長機制下,形變溫度施壓對氧化層所造成的影響,希望藉由這些測試,來改善二
氧化矽超薄閘極氧化層的品質。經由實驗我們發現,適當的伸張形變以及熱效
應,會增進金氧半元件的氧化層的品質,如漏電流密度及崩潰電壓…等電特性在
經過伸張形變溫度施壓之後都獲得了改善,而我們認為,此一改善是由於伸張形
變溫度施壓減少了矽分子和二氧化矽分子之間晶格的不匹配,而造成矽基板和二
氧化矽之間的界面鍵結更加完美,才能使其電特性得到這麼大的改善。透過觀察
N 型基版的金氧半電容元件,我們發現其閘極電容值在低頻率測量時會出現負
值,在此篇論文中,我們也對此一現象做出種種的分析,並根據這些分析,我們
推測負值電容的發生原因是和閘極的漏電流有關。而透過上述的形變溫度施壓處
理,元件的漏電流減小了,同樣的,負電容值再經過形變溫度處理後也被大幅的
縮小。
zh_TW
dc.description.abstractWith the scaling of MOS devices, the thickness of oxides becomes thinner.
Nevertheless, dielectrics are requested to have higher ability to withstand the current.
Therefore, it becomes an important topic to promote the quality of silicon-dioxide
dielectrics. However, the increasing of power densities cause thermal and stress issue
more seriously. In this thesis, we studied the effects of strain-temperature stress on the
electrical characteristics of MOS devices with gate oxides grown by different
techniques, and tried to promote the oxide quality by the proposed method. From the
experimental results, we found that suitable tensile strain-temperature stress would
promote the quality of MOS gate oxides. The electrical characteristics on tensile
strain-temperature stress are investigated. While observing the C-V characteristics of
MOS (n) capacitors, we found that the gate capacitance came to negative at low
measured frequency. We infer the phenomenon is related to the gate leakage current
by kinds of analyses. Thus, after tensile strain-temperature stress, the negative
capacitance phenomenon can be reduced.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:43:27Z (GMT). No. of bitstreams: 1
ntu-96-R94943128-1.pdf: 2742857 bytes, checksum: f61525e31775b8fe420fa7878537eaed (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract (Chinese)……………………………………………...........I
Abstract (English)..…………………………………………………..II
Contents……………………………………………………………....III
Figure Captions…………………………………………………...…IV
Chapter 1 Introduction
1-1 Motivation of This Work…………………………………..1
1-2 Measurement Tools and Analysis Models of MOS
Capacitors………………………………………………….3
1-3 Rapid Thermal Processing System………………………...6
1-4 Anodization Technique…………………………………….7
Chapter 2 Effects on MOS Capacitors with Ultra-thin
Gate Oxides under Strain-Temperature Stress
2-1 Introduction………………………………………………13
2-2 Experimental Setup………………………………………14
2-3 Result and Discussion……………………………………17
2-3-1 RTP Samples…………………………….................17
2-3-2 Tilted Cathode Anodization Samples……………...19
2-4 Summary…………………………………………………22
Chapter 3 Negative Capacitance Phenomenon in MOS (N)
C-V Characteristics
3-1 Introduction………………………………………………38
3-2 Observation and Discussion...…………………………....39
3-3 Summary…………………………………………………45
Chapter 4 Conclusions and Future Work
4-1 Conclusions………………………………………………56
4-2 Future work………………………………………………57
References…………………………………………………….58
dc.language.isozh-TW
dc.subject應力zh_TW
dc.subject金氧半元件zh_TW
dc.subject超薄氧化層zh_TW
dc.subjectUltra-thin oxidesen
dc.subjectstressen
dc.subjectMOS capacitorsen
dc.title形變溫度施壓處理對超薄閘極氧化層金氧半元件
特性影響之研究
zh_TW
dc.titleInvestigation of Strain-Temperature Stress Effects
on the Characteristics of MOS Capacitors with
Ultra-thin Gate Oxides
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭宇軒,毛明華
dc.subject.keyword金氧半元件,超薄氧化層,應力,zh_TW
dc.subject.keywordMOS capacitors,Ultra-thin oxides,stress,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved