Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29143
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王錦堂
dc.contributor.authorHui-Ching Yangen
dc.contributor.author楊惠晴zh_TW
dc.date.accessioned2021-06-13T00:42:40Z-
dc.date.available2012-08-13
dc.date.copyright2007-08-13
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citationAbranches, J., M. M. Candella, et al. (2006). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 188(11): 3748-56.
Aguilar, J., A. Cruz, et al. (1994). Multiple hepatic and pulmonary abscesses caused by Klebsiella pneumoniae. Enferm Infecc Microbiol Clin 12(5): 270-1.
Anderl, J. N., M. J. Franklin, et al. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7): 1818-24.
Ayinala, S. R., M. Vulpe, et al. (2001). Pyogenic liver abscesses due to Klebsiella pneumoniae in a diabetic patient. J Miss State Med Assoc 42(3): 67-70.
Balestrino, D., J. A. Haagensen, et al. (2005). Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 187(8): 2870-80.
Barton, E. N., H. Daisley, et al. (1991). Diabetes mellitus and Klebsiella pneumoniae liver abscess in adults. Trop Geogr Med 43(1-2): 100-4.
Beachey, E. H., C. S. Giampapa, et al. (1988). Bacterial adherence. Adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. Am Rev Respir Dis 138(6 Pt 2): S45-8.
Boddicker, J. D., R. A. Anderson, et al. (2006). Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 74(8): 4590-7.
Cahill, M., B. Chang, et al. (2000). Bilateral endogenous bacterial endophthalmitis associated with pyogenic hepatic abscess. Br J Ophthalmol 84(12): 1436.
Casanova, C., J. A. Lorente, et al. (1989). Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med 149(6): 1467.
Chang, S. C., C. T. Fang, et al. (2000). Klebsiella pneumoniae isolates causing liver abscess in Taiwan. Diagn Microbiol Infect Dis 37(4): 279-84.
Cheng, D. L., Y. C. Liu, et al. (1991). Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med 151(8): 1557-9.
Chiu, C. T., D. Y. Lin, et al. (1988). Metastatic septic endophthalmitis in pyogenic liver abscess. J Clin Gastroenterol 10(5): 524-7.
Chung, Y. J. and M. H. Saier, Jr. (2002). Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 184(9): 2543-5.
Costerton, J. W., P. S. Stewart, et al. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284(5418): 1318-22.
Couez, D., E. Libon, et al. (1991). Klebsiella pneumoniae liver abscess with septic endophthalmitis. The role of computed tomography. J Belge Radiol 74(1): 41-4.
Cramton, S. E., C. Gerke, et al. (1999). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10): 5427-33.
Creti, R., S. Koch, et al. (2006). Enterococcal colonization of the gastro-intestinal tract: role of biofilm and environmental oligosaccharides. BMC Microbiol 6: 60.
Donlan, R. M. (2001). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33(8): 1387-92.
EUCAST (2000). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 6(9): 509-15.
Fang, C. T., Y. C. Chen, et al. (2000). Klebsiella pneumoniae meningitis: timing of antimicrobial therapy and prognosis. QIM 93(1): 45-53.
Fang, C. T., Y. P. Chuang, et al. (2004). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199(5): 697-705.
Frees, D., A. Chastanet, et al. (2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54(5): 1445-62.
Fung, C. P., F. Y. Chang, et al. (2002). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50(3): 420-4.
Greener, T., D. Govezensky, et al. (1993). A novel multicopy suppressor of a groEL mutation includes two nested open reading frames transcribed from different promoters. EMBO J 12(3): 889-96.
Holtje, J. V. (1998). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62(1): 181-203.
Jones, K. and S. B. Bradshaw (1996). Biofilm formation by the enterobacteriaceae: a comparison between salmonella enteritidis, Escherichia coli and a nitrogen-fixing strain of Klebsiella pneumoniae. J Appl Bacteriol 80(4): 458-64.
Knobloch, J. K., M. Nedelmann, et al. (2003). Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 69(10): 5812-8.
Ko, W. C., D. L. Paterson, et al. (2002). Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8(2): 160-6.
Kurtz, H. D., Jr. and J. Smith (1992). Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell. J Bacteriol 174(3): 687-94.
Langstraat, J., M. Bohse, et al. (2001). Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69(9): 5805-12.
Lee, S. F., Y. H. Li, et al. (1996). Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun 64(3): 1035-8.
Link, A. J., D. Phillips, et al. (1997). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179(20): 6228-37.
Liu, Y. C., D. L. Cheng, et al. (1986). Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med 146(10): 1913-6.
Lotierzo, M., B. Tse Sum Bui, et al. (2005). Biotin synthase mechanism: an overview. Biochem Soc Trans 33(Pt 4): 820-3.
McEldowney, S. and M. Fletcher (1986). Variability of the Influence of Physicochemical Factors Affecting Bacterial Adhesion to Polystyrene Substrata. Appl Environ Microbiol 52(3): 460-465.
Naito, T., T. Kawakami, et al. (1999). A case of endophthalmitis and abscesses in the liver and the lung caused by Klebsiella pneumoniae. Kansenshogaku Zasshi 73(9): 935-8.
O'Toole, G., H. B. Kaplan, et al. (2000). Biofilm formation as microbial development. Annu Rev Microbiol 54: 49-79.
O'Toole, G. A. and R. Kolter (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28(3): 449-61.
Ohmori, S., K. Shiraki, et al. (2002). Septic endophthalmitis and meningitis associated with Klebsiella pneumoniae liver abscess. Hepatol Res 22(4): 307-312.
Parsek, M. R. and E. P. Greenberg (1999). Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310: 43-55.
Paulsen, I. T., R. A. Skurray, et al. (1996). The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19(6): 1167-75.
Podschun, R. and U. Ullmann (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4): 589-603.
Postma, P. W., J. W. Lengeler, et al. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57(3): 543-94.
Pratt, L. A. and R. Kolter (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30(2): 285-93.
Saccente, M. (1999). Klebsiella pneumoniae liver abscess, endophthalmitis, and meningitis in a man with newly recognized diabetes mellitus. Clin Infect Dis 29(6): 1570-1.
Schultz, J. E. and A. Matin (1991). Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J Mol Biol 218(1): 129-40.
Sikora, C. W. and R. J. Turner (2005). SMR proteins SugE and EmrE bind ligand with similar affinity and stoichiometry. Biochem Biophys Res Commun 335(1): 105-11.
Son, M. S., C. Del Castilho, et al. (2003). Mutagenesis of SugE, a small multidrug resistance protein. Biochem Biophys Res Commun 312(4): 914-21.
Stanley, N. R. and B. A. Lazazzera (2004). Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52(4): 917-24.
Tang, L. M. and S. T. Chen (1994). Klebsiella pneumoniae meningitis: prognostic factors. Scand J Infect Dis 26(1): 95-102.
Touhami, A., M. H. Jericho, et al. (2006). Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol 188(2): 370-7.
Vuopio-Varkila, J. and G. K. Schoolnik (1991). Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J Exp Med 174(5): 1167-77.
Wang, J. H., Y. C. Liu, et al. (1998). Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26(6): 1434-8.
Watnick, P. and R. Kolter (2000). Biofilm, city of microbes. J Bacteriol 182(10): 2675-9.
Zahller, J. and P. S. Stewart (2002). Transmission electron microscopic study of antibiotic action on Klebsiella pneumoniae biofilm. Antimicrob Agents Chemother 46(8): 2679-83.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29143-
dc.description.abstract克雷伯氏肺炎桿菌(Klebsiella pneumoniae)為革蘭氏陰性的桿菌,屬於腸內菌科 (Enterobacteriacea),是一重要的伺機性感染致病菌(opportunistic pathogen),常引起泌尿道感染、菌血症及肺炎等院內感染,也會對免疫機能不全的患者造成肺炎和敗血性休克。目前已知生物膜(biofilm)的形成與發展在許多種細菌的致病過程中扮演著重要的角色,克雷伯氏肺炎桿菌會藉由形成生物膜,以增加對抗生素、抗菌劑及宿主免疫系統反應的抵抗力。之前本實驗室利用跳躍基因 (transposon) 建構成包含2500株的克雷伯氏肺炎桿菌NTUH-K2044菌株之突變株庫(mutant library),因此我們想藉由此突變株庫篩選出與生物膜形成有關的基因。挑選的方式採用生物膜微量培養盤試驗(biofilm microtiter plate assay),在篩選突變株的過程中,觀察到其中有3株突變菌株其生物膜量有明顯增加(up-regulation):NTUH-K10-19、NTUH-K10-23、NTUH-K10-30,有3株突變菌株其生物膜量有明顯減少(down-regulation):NTUH-K10-33、NTUH-K10-43、NTUH-K10-49。其中NTUH-K10-23為sugE基因突變株,NTUH-K10-33為clpX基因突變株,其餘突變株所破壞的基因仍未知。因為ClpX蛋白質已知在金黃色葡萄球菌(Staphylococcus aureus)與生物膜形成相關,所以本篇實驗選擇被跳躍子破壞sugE基因造成生物膜量上升的NTUH-K10-23突變株作為研究目標。用無抗生素基因標記的方式再次將剔除得NTUH-K2044ΔsugE突變菌株(unmarker deletion mutant)與其染色體互補株(chromosome complementation)證實影響生物膜生成是由於喪失sugE基因的功能,而非因為在細菌染色體上其他地方的自發性突變(spontaneous mutation)。為了進一步研究sugE基因的功能,我們選取NTUH-K2044野生菌株與NTUH-K2044ΔsugE突變菌株來進行微陣列實驗。利用兩者相較RNA表現量≧5倍的條件篩選所挑出12個RNA表現量上升的點中,大部分可歸類成與麥芽糖調節子(maltose regulon)相關的基因(malP、malF、lamB、treB)以及與碳水化合物磷酸轉移酶系統(carbohydrate phosphotransferase system, PTS)相關的基因(treB、licC、casA、celA),這些基因均會影響細菌生物膜的形成。微陣列實驗的結果,提供了ΔsugE突變菌株對於調控生物膜形成量上升的線索,但這之間的調控機制仍待進一步實驗。zh_TW
dc.description.abstractKlebsiella pneumoniae is an opportunistic pathogen associated with nosocomial infections such as urinary tract infection, bacteremia and pneumonia. The biofilm formation of bacteria has been known to involve in the increasing resistance to antibiotic, antibacterial, and host immune responses. In order to explore the genes responsible for the biofilm formation in K. pneumoniae, a NTUH-K2044 mutant transposon library was screened by biofilm microtiter plate assay. Three mutants revealed decreased biofilm formation, and three mutants revealed increased biofilm formation compared with wild-type. The interrupted gene of one mutant with increased biofilm formation was similar with sugE in Escherichia coli. Unmarked deletion and chromosomal complementation of sugE demonstrated that sugE was responsible for the biofilm formation. In order to sutudy the role of gene regulation in sugE in biofilm formation, the RNA expression profiles of ΔsugE mutant was compared with those of wild type by microarray. The expressions of twelve clones were up-regulated in ΔsugE mutant. These twelve clones contained genes involved in maltose catabolism and carbohydrate phosphotransferase system (PTS) that had been proven to associate with biofilm formation. These results suggested that sugE might affect the biofilm formation through the regulation of genes in maltose regulon and carbohydrate phosphotransferase system.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:42:40Z (GMT). No. of bitstreams: 1
ntu-96-R94445119-1.pdf: 3849974 bytes, checksum: 77582cf0fd4d6279d6e5be0ce51f279e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
口試委員會審定書………………………………………………………………………I
誌謝……………………………………………………………………………………...II
中文摘要……………………………………………………………………………….III
英文摘要………………………………………………………………………………..V
目錄……………………………………………………………………………………VII
表目錄……………………………………………………………………………….…IX
圖目錄………………………………………………………………………………..…X
第一章 緒論…………………………………………………………………………...1
第二章 材料與方法…………………………………………………………………...4
1. 細菌菌株與質體…………………………………………………………..……4
2. 生物膜微量培養盤試驗(Biofilm microtiter plate assay)……………………..4
3. 聚合酶連鎖反應(polymerase chain reaction, PCR)…………………………..5
4. 檢測突變株基因突變位置……………………………………………………..6
5. 建構克雷伯氏肺炎桿菌ΔsugE突變株……………….………………………..7
6. 建構ΔsugE突變株的染色體互補(chromosome complementation)………..9
7. 建構sugE基因過量表現在NTUH-K2044以及DH10B…………………..…10
8. 利用藥物培養基稀釋法測最低抑制濃度(minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution)…………….…………..…..…11
9. 萃取克雷伯氏肺炎桿菌total RNA…………………………………….…..…12
10. 克雷伯氏肺炎桿菌基因微陣列…………………………………….…..…13
11. 反轉錄定量聚合酶鏈鎖反應(RT-qPCR)…………………………….…..…17
第三章 結果………………………………………………………………….............18
1. 利用生物膜微量培養盤試驗篩選克雷伯氏肺炎桿菌突變庫……..…..……18
2. 確認NTUH-K10-23菌株所被突變的基因………………………....…..……19
3. 確認破壞了sugE基因影響了克雷伯氏肺炎桿菌生物膜的生成……...……19
4. 經由生物資訊的方式瞭解SugE蛋白質的生物功能…………………..……20
5. 利用藥物培養基稀釋法測克雷伯氏肺炎桿菌對陽離子型藥物的最低抑制濃度……………………………..……………………………….……………..…21
6. 利用克雷伯氏肺炎桿菌基因微陣列尋找sugE基因所影響的基因…...……22
第四章 總結與討論………………………………………………………….............23
第五章 參考文獻…………………………………………….………………………53
表 目 錄
表一、研究中使用的細菌菌株及載體………………………………………………27
表二、實驗中使用到的引子……………………………………………………...……28
表三、利用生物膜微量培養盤試驗篩選克雷伯氏肺炎桿菌突變株庫所挑到的結果……………………………………………………………………………….30
表四、藥物最低抑制濃度……………………………………………………...………31
表五、利用克雷伯氏肺炎桿菌基因微陣列工具,以NTUH-K2044野生株為對照組、NTUH-K2044ΔsugE突變菌株為實驗組,比較兩者基因的 RNA表現量…………………………………………………...………………………..…32
圖 目 錄
圖一、生物膜微量培養盤試驗過程…………………………………………………...36
圖二、檢測突變株基因突變位置過程………………………………………………...37
圖三、pKO3-Km基因剔除載體及突變株篩選過程……………...…………………...38
圖四、利用PCR確定NTUH-K2044ΔsugE突變菌株……………...………………...39
圖五、pKO3-Km基因互補載體及染色體互補株篩選過程………………………......40
圖六、利用PCR確定NTUH-K2044ΔsugE染色體互補菌株……………………......41
圖七、克雷伯氏肺炎桿菌NTUH-K2044野生型菌株在96孔微量培養盤中培養一至八小時………………………………………………………………………….42
圖八、以生物膜微量培養盤試驗所找出的突變株生物膜結晶紫染色質.………......43
圖九、克雷伯氏肺炎桿菌與大腸桿菌蛋白質序列比較結果.………..........................44
圖十、利用生物膜微量培養盤試驗比較NTUH-K2044野生株.………......................45
圖十一、利用PCR確定NTUH-K10-23突變株跳躍子的位置….................................46
圖十二、利用生物膜微量培養盤試驗比較NTUH-K2044野生株、NTUH-K2044ΔsugE突變株的生物膜表現量...........................................47
圖十三、利用生物膜微量培養盤試驗比較NTUH-K2044野生株、NTUH-K2044ΔsugE突變株、NTUH-K2044ΔsugE染色體互補菌株的生物膜表現量................................................................48
圖十四、測量在生物膜微量培養盤試驗中,NTUH-K2044野生株、NTUH-K10-23突變株、NTUH-K2044ΔsugE突變株.................................................................49
圖十五、SMART所預測SugE蛋白質四段Transmembrane segments的蛋白質序列位置....................................................................................................50
圖十六、利用克雷伯氏肺炎桿菌基因微陣列工具,以NTUH-K2044野生菌株為對照組、NTUK-K2044
dc.language.isozh-TW
dc.subject克&#63817zh_TW
dc.subject系統zh_TW
dc.subject碳水化合物磷酸轉移&#37238zh_TW
dc.subject麥芽糖調節子zh_TW
dc.subjectsugE 基因zh_TW
dc.subject生物膜量上升zh_TW
dc.subject生物膜微量培養盤試驗zh_TW
dc.subject伯氏肺炎桿菌zh_TW
dc.subjectbiofilm microtiter plate assayen
dc.subjectup-regulated biofilm formationen
dc.subjectmaltose regulonen
dc.subjectcarbohydrate phosphotransferase system (PTS)en
dc.subjectKlebsiella pneumoniaeen
dc.subjectsugE geneen
dc.title從突變基因庫找出克雷伯氏肺炎桿菌基因體中與生物膜生成相關的基因zh_TW
dc.titleSelection of biofilm formation related-genes from a Klebsiella pneumoniae mutant libraryen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡,賴信志,鄧麗珍
dc.subject.keyword克&#63817,伯氏肺炎桿菌,生物膜微量培養盤試驗,生物膜量上升,sugE 基因,麥芽糖調節子,碳水化合物磷酸轉移&#37238,系統,zh_TW
dc.subject.keywordKlebsiella pneumoniae,biofilm microtiter plate assay,up-regulated biofilm formation,sugE gene,maltose regulon,carbohydrate phosphotransferase system (PTS),en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
3.76 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved