請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29129完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆(Kwei-Long Huang) | |
| dc.contributor.author | Chun-Kai Wang | en |
| dc.contributor.author | 王俊凱 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:41:50Z | - |
| dc.date.available | 2013-08-10 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | 1. 資策會產業情報研究所,
http://mic.iii.org.tw/aisp/pressroom/press01_pop.asp?sno=225&cred=2010/10/18&type1=2 2. 台灣網路資訊中心 http://www.twnic.net/NEWS4/91.pdf 3. Abdul-Jalbar, B., Gutierrez, J. M., & Sicilia, J. (2009). A two-echelon inventory/distribution system with power demand pattern and backorders. International Journal of Production Economics, 122(2), 519-524. 4. Axsater, S. (1990). Modeling Emergency Lateral Transshipments in Inventory Systems. Management Science, 36(11), 1329-1338. 5. Axsater, S. (2003). A new decision rule for lateral transshipments in inventory systems. Management Science, 49(9), 1168-1179. 6. Barbosa-Povoa, A. P. F. D., Relvas, S., Matos, H. A., Fialho, J., & Pinheiro, A. S. (2006). Pipeline scheduling and inventory management of a multiproduct distribution oil system. Industrial & Engineering Chemistry Research, 45(23), 7841-7855. 7. Chan, F. T. S., Kumar, N., & Choy, K. L. (2007). Decision-making approach for the distribution centre location problem in a supply chain network using the fuzzy-based hierarchical concept. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 221(4), 725-739 8. Chen, M. C., Huang, C. L., Chen, K. Y., & Wu, H. P. (2005). Aggregation of orders in distribution centers using data mining. Expert Systems with Applications, 28(3), 453-460. 9. Chou, S. Y., & Ou, C. W. (2009). International distribution center selection from a foreign market perspective using a weighted fuzzy factor rating system. Expert Systems with Applications, 36(2), 1773-1782. 10. Cintron, A., Ravindran, A. R., & Ventura, J. A. (2010). Multi-criteria mathematical model for designing the distribution network of a consumer goods company. Computers & Industrial Engineering, 58(4), 584-593. 11. Duffy, G., & Dale, B. G. (2002). E-commerce processes: a study of criticality. Industrial Management & Data Systems, 102(8-9), 432-441. 12. Eksioglu, B., Capar, I., & Geunes, J. (2011). A decision rule for coordination of inventory and transportation in a two-stage supply chain with alternative supply sources. Computers & Operations Research, 38(12), 1696-1704. 13. Gaonkar, R. S., & Viswanadharn, N. (2007). Analytical framework for the management of risk in supply chains. Ieee Transactions on Automation Science and Engineering, 4(2), 265-273. 14. Hadi-Vencheh, A. (2010). An improvement to multiple criteria ABC inventory classification. European Journal of Operational Research, 201(3), 962-965. 15. Jabbarzadeh, A., Aryanezhad, M. B., & Jalali, S. G. (2010). An integrated supply chain design model with random disruptions consideration. African Journal of Business Management, 4(12), 2393-2401. 16. Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501. 17. Lee, Y. H., Jung, J. W., & Jeon, Y. S. (2007). An effective lateral transshipment policy to improve service level in the supply chain. International Journal of Production Economics, 106(1), 115-126. 18. Liang, T. P., Lin, C. Y., & Chen, D. N. (2004). Effects of electronic commerce models and industrial characteristics on firm performance. Industrial Management & Data Systems, 104(7), 538-545. 19. Lin, C. H., & Lu, I. Y. (1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60-1, 301-307. 20. Lu, C. S., & Yang, C. C. (2010). Logistics service capabilities and firm performance of international distribution center operators. Service Industries Journal, 30(2), 281-298. 21. Mohapatra, P. K. J., & Sarkar, A. (2009). Determining the optimal size of supply base with the consideration of risks of supply disruptions. International Journal of Production Economics, 119(1), 122-135. 22. Nagi, R., Huang, S. M., & Batta, R. (2009). Simultaneous siting and sizing of distribution centers on a plane. Annals of Operations Research, 167(1), 157-170. 23. Ng, C. T., Yang, L., & Cheng, T. C. E. (2010). Evaluating the effects of distribution centres on the performance of vendor-managed inventory systems. European Journal of Operational Research, 201(1), 112-122 24. Ng, W. L. (2007). A simple classifier for multiple criteria ABC analysis. European Journal of Operational Research, 177(1), 344-353. 25. Pelagagge, P. M., & Caputo, A. C. (2006). Management criteria of automated order picking systems in high-rotation high-volume distribution centers. Industrial Management & Data Systems, 106(9), 1359-1383. 26. Ramanathan, R. (2005). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. 27. Ross, A. M., Rong, Y., & Snyder, L. V. (2008). Supply disruptions with time-dependent parameters. Computers & Operations Research, 35(11), 3504-3529. 28. Sawik, T. (2011). Selection of supply portfolio under disruption risks. Omega-International Journal of Management Science, 39(2), 194-208. 29. Shen, S. Y., & Honda, M. (2009). Incorporating lateral transfers of vehicles and inventory into an integrated replenishment and routing plan for a three-echelon supply chain. Computers & Industrial Engineering, 56(2), 754-775. 30. Shen, Z. J. M., & Qi, L. (2007). A supply chain design model with unreliable supply. Naval Research Logistics, 54(8), 829-844. 31. Tagaras, G. (1999). Pooling in multi-location periodic inventory distribution systems. Omega-International Journal of Management Science, 27(1), 39-59. 32. Taskin, S., & Lodree, E. J. (2010). Inventory decisions for emergency supplies based on hurricane count predictions. International Journal of Production Economics, 126(1), 66-75. 33. Walker, J. (1993). The Single-Period Inventory Problem with Triangular Demand Distribution. Journal of the Operational Research Society, 44(7), 725-731. 34. Williams, B. D., & Waller, M. A. (2011). Estimating a retailer's base stock level: an optimal distribution center order forecast policy. Journal of the Operational Research Society, 62(4), 662-666. 35. Wilson, M. C. (2007). The impact of transportation disruptions on supply chain performance. Transportation Research Part E-Logistics and Transportation Review, 43(4), 295-320. 36. Xiao, T. J., Yu, G., Sheng, Z. H., & Xia, Y. S. (2005). Coordination of a supply chain with one-manufacturer and two-retailers under demand promotion and disruption management decisions. Annals of Operations Research, 135(1), 87-109. 37. Yenradee, P., & Monthatipkul, C. (2008). Inventory/distribution control system in a one-warehouse/multi-retailer supply chain. International Journal of Production Economics, 114(1), 119-133. 38. Zhou, P., & Fan, L. W. (2007). A note on multi-criteria ABC inventory classification using weighted linear optimization. European Journal of Operational Research, 182(3), 1488-1491. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29129 | - |
| dc.description.abstract | 近年來,民眾使用網路購物的比率大為上升。隨著網路購物市場商機增加,各公司為了滿足消費者的需求,開始在各地興建倉儲配送中心(distribution center),並將舊有的倉儲配送中心搬遷、擴張,以符合市場之需求。當消費者在網路上進行購買行為時,倉儲配送中心之供應鏈(supply chain)系統即會進行商品配送,以期在特定時間內,滿足消費者的訂單需求。
本研究即探討,當網路購物公司之倉儲配送中心需要進行擴廠搬遷時,如何制定出一套搬遷流程以降低這段時期所衍生的成本。由於新、舊倉分別負責不同時期之市場需求,所以除了搬遷運輸成本外,往來於新、舊倉之間的側向緊急運輸(lateral emergency transshipment)補貨成本、訂單完成率之高低、搬遷過程中造成的商品擺放錯誤成本等等,皆為本研究制定搬遷政策時所關注的重點。 搬遷政策(moving policy)的制定上,有將各商品直接排序之方法,如:體積大小、價錢高低、出貨頻率高低等等;亦有依市場需求變動和歷史銷售資料所制定之改良搬遷方案。搬遷政策的制定除了降低運輸成本外,該政策能夠使搬遷過程迅速準確、流程方便簡潔、不降低消費者的服務水準,亦為衡量政策優劣的標準。 本研究將建構一確定型整數規劃模型,以描述此問題並進行最佳每日商品搬遷數量之求解;而系統模擬模型的建構,則將對整個搬遷流程有更詳細的描述。在缺貨商品數量、訂單完成率、複雜度的衡量上,也可以有準確的衡量。 各績效衡量項目之間,會有不同的成本結構;所處的環境也可能會有不同,如:每日運輸趟次的限制。本研究將探討在不同成本結構或不同環境下,搬遷政策的選擇上是否會有改變。藉由不同情境和成本下之系統模擬,面對此決策問題的公司,即可彈性的在不同狀況下,選擇出適宜的搬遷方法。而針對此問題所撰寫之程式,亦將介紹於附錄中。 | zh_TW |
| dc.description.abstract | This research studies the logistics activities when a retailer is in the transition of moving its current distribution center (DC) to a new location. Because of expanding business, an online store is required to build a more spacious DC to sustain the increasing customer orders. During the early stage of the transition period, customer orders are still fulfilled by the current DC. At the same time, inventory has to be gradually transported to the new DC. If a product is moved to the new DC but an order of that product arrives, emergency shipping is required to move the product back to the current DC and an extra cost incurs, Given the inventory levels of products, the customer forecasts and the capacity of trucks, the online retailer has to determine a logistics plan of moving items to the new facility so that the cost is minimized including shipping cost, the penalty of shortage, and the penalty of complicated moving operations.
A deterministic integer programming model is formulated. Although this model can obtain an optimal solution, it is time consuming to solve a real-world problem in a large scale. In additions, demand orders in fact are uncertainty and the objective such as complexity of packing items in a truck is not simple to quantify. Therefore, a system simulation model is constructed, which can authentically reflect the results of practical moving policies without the drawbacks as mentioned in the mathematical model. Moving policies’ performance can be measured by different criterion, such as order fulfill rate, the number of emergency shipments, complexity. This research compares the simulation results them to provide the decision makers the most suitable moving policy under each condition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:41:50Z (GMT). No. of bitstreams: 1 ntu-100-R98546033-1.pdf: 1659388 bytes, checksum: e4c0f4c7b4c939755aace687d0a8aa22 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 摘要 III Abstract IV 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 論文架構 6 第二章 文獻探討 8 2.1 供應鏈中倉儲中心研究 8 2.2 多標準存貨分類法延伸 11 2.3 供應鏈中存貨分析 12 2.4 側向緊急運輸 12 2.5 未來發展方向之相關文獻 13 第三章 模型建構與求解 15 3.1 問題描述 15 3.2 確定型整數規劃模型 19 3.2.1 整數規劃模型假設 19 3.2.2 整數規劃模型變數設定 20 3.2.3 整數規劃模型限制式設定 23 3.2.4 整數規劃模型延伸與修正 26 3.2.5 整數規劃模型求解與限制 31 第四章 系統模擬模型 34 4.1 系統模擬模型假設 34 4.1.1 蒙地卡羅模擬法 35 4.1.2 倉儲運作流程 36 4.1.3 系統績效衡量項目 37 4.1.4 輸入參數設定 42 4.2 基本搬遷法則 44 4.3 改良搬遷法則 52 4.4 系統績效衡量方法 56 4.4.1 系統績效衡量方法 56 4.5 系統模擬模型之參數估計 57 4.5.1 抽樣方法說明 58 4.5.2 商品種類分類抽樣 59 4.5.3 各商品需求機率分配 61 4.5.4 商品需求量和訂單數量產生方法 64 第五章 個案公司分析 67 5.1 個案情境設定 67 5.2 基本搬遷法則績效分析 69 5.3 混合基本搬遷法則績效分析 73 5.4 改良搬遷法則績效分析 75 5.4.1 預留存貨搬遷法 76 5.4.2 預留比例法-歷史資料眾數為參考 79 5.4.3 歷史銷售資料等比例搬遷 81 5.4.4 訂單等比例搬遷 85 5.4.5 輸入資料改變之比例調整分析 87 5.4.6 比例搜尋範圍 90 5.5 情境參數限制調整 93 5.5.1 搬遷運輸車次限制調整 93 5.5.2 緊急運輸車次參數調整 95 5.5.3 訂單商品數量機率差異 96 5.6 各改良搬遷方案使用時機 97 第六章 結論與建議 106 6.1 研究結論與建議 106 6.2 研究貢獻 109 6.3 研究限制 111 6.4 未來研究方向 111 參考文獻 113 附錄 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 搬遷政策 | zh_TW |
| dc.subject | 倉儲配送中心 | zh_TW |
| dc.subject | 供應鏈 | zh_TW |
| dc.subject | 側向緊急運輸 | zh_TW |
| dc.subject | Moving policy | en |
| dc.subject | Distribution Center | en |
| dc.subject | Supply chain | en |
| dc.subject | Lateral emergency transshipment | en |
| dc.title | 網路購物公司配送中心搬遷方案之研究 | zh_TW |
| dc.title | An Investigation on Moving Policies for a Distribution Center of a On-Line Retailer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 余峻瑜(Jiun-Yu Yu) | |
| dc.contributor.oralexamcommittee | 郭佳瑋(Chia-Wei Kuo),吳政鴻(Cheng-Hung Wu) | |
| dc.subject.keyword | 倉儲配送中心,供應鏈,側向緊急運輸,搬遷政策, | zh_TW |
| dc.subject.keyword | Distribution Center,Supply chain,Lateral emergency transshipment,Moving policy, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
