請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29120
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁庚辰 | |
dc.contributor.author | Yang Fang Chi | en |
dc.contributor.author | 楊芳齊 | zh_TW |
dc.date.accessioned | 2021-06-13T00:41:14Z | - |
dc.date.available | 2012-07-27 | |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-25 | |
dc.identifier.citation | 參考文獻
胡書榕(民85)。「大腦皮質前額參與抑制性逃避記憶之形成及提取」。(未發表之碩士學位論文)。台北:國立台灣大學心理系。 Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2001). Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus, 11, 8-17. Anagnoataras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within- subjects examination. The Journal of Neuroscience, 19, 1106-1114. Badyaev, A. V. (2005). Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B, 272, 877-886. Barbas, H., & Blatt, G. J. (1995). Topographically specific hippocampal projections target functionally distinct areas in the rhesus monkey. Hippocampus, 5, 511-533. Barros, D. M., Mello e Souza, T., De David, T., Choi, H., Aguzzoli, A., Madche, C. et al. (2001). Simultaneous modulation of retrieval by dopaminergic D1, β-noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat. Behavioral Brain Research, 124, 1-7. Cador, M., Robbins, T. W., & Everitt, B. J. (1989). Involvement of the amygdala in stimulus- reward associations: Interactions with the ventral striatum. Neuroscience, 30, 77-86. Cahill, L., Pham, C. A., & Setlow, B. (2000). Impaired memory consolidation in rats produced with β-adrenergic blockade. Neurobiology of Learning and Memory, 74, 259-266. Caine, S. B., Heinrichs, S. C., Coffin, V. L., & Koob, G. F. (1995). Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Research, 692, 47-56. Campeau, S. & Davis, M. (1995). Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. The Journal of Neuroscience, 15, 2301-2311. Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26, 321-352. Carr, G. D., & White, N. M. (1983). Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sciences, 33, 2551-2557. Chang, S. D., Wang, C. Y., Chien, P. F., & Liang, K. C. (2005). Formation of context-shock association in classical fear conditioning: a role of the dorsal hippocampus [Abstract]. Society for Neuroscience Abstract, Abstract No. 414. 9. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonldes, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604-608. de Borchgrave, R., Rawlins, J. N. P., Dickinson, A., & Balleine, B. W. (2002). Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Experimental Brain Research, 144, 50-68. Doyere, V., Burette, F., Negro, C. R., Laroche, S. (1993). Long-term potentiation of hippocampal afferents and efferents to prefrontal cortex: implications for associative learning. Neuropsychologia, 31, 1031-1053. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209-226. Fanselow, M. S. (1982). The postshock activity burst. Animal Learning and Behavior, 10, 448-454. Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110, 73-81. Floresco, S. B., Seamans, J. K., & Phillips, A. G. (1997). Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. The Journal of Neuroscience, 17, 1880-1890. French, S. J., & Totterdell, S. (2002). Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. The Journal of Comparative Neurology, 446, 151-165. Friedman, H. R., & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. The Journal of Neurosicence, 14, 2775-2788. Fuster, J. M. (1980). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Paven Press. Gold, P. E., & van Buskirk, R. (1976). Effects of posttrial hormone injections on memory processes. Hormones and Behavior, 7, 509-517. Gray, J. A. (1983). A theory of anxiety: the role of the limbic system. L’Encephale, 9, 161-166. Groenewegen, H. J. (1999). Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology, 27, 149-164. Hall, J., Thomas, K. L., & Everitt, B. J. (2000). Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nature Neuroscience, 3, 533-535. Hebb, D. O. (1949). The organization of behavior. New York: John Wiley & Sons. Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and Biobehavioral Reviews, 27, 555-579. Izquierdo, I., Da Cunha, C., Rosat, R., Jerusalinsky, D., Ferreira, M. B. C., & Medina, J. H. (1992). Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behavioral and Neural Biology, 58, 16-26. Jackson, M. E., & Moghaddam, B. (2001). Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. The Journal of Neuroscience, 21, 676-681. Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rats. Behavioral and Neural Biology, 60, 9-26. Jay, T. M., Burette, F., & Laroche, S. (1996). Plasticity of the hippocampal- prefrontal cortex synapses. Journal of Physiology (Paris), 90, 361-366. Jay, T. M., Thierry, A. M., Wiklund, L., Glowinski, J. (1992). Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission. European Journal of Neuroscience, 4, 1285-1295. Jay, T. M., & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. The Journal of Comparative Neurology, 131, 574-586. Ji, J. Z., Wang, X. M., & Li, B. M. (2003). Deficit in long-term contextual fear memory induced by blockade of β-adrenoceptors in hippocampal CA1 region. European Journal of Neuroscience, 17, 1947-1952. Joels, M. Pu, Z. Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158. Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. PNAS, 101, 3310-3315. Kesner, R. P., Hunt, M. E., Williams, J. M., & Long, J. M. (1996). Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cerebral Cortex, 6, 311-318. Kung, J. C., Su, N. M., Fan, R. J., Chai, S. C., & Shyu, B. C. (2003). Contribution of the anterior cingulate cortex to laser-pain conditioning in rats. Brain Research, 970, 58-72. LaLumiere, R. T., Buen, T. V., & McGaugh, J. L. (2003). Posttraining intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. The Journal of Neuroscience, 23, 6754-6758. Laroche, S., Davis, S., & Jay, T. M. (2000). Plasticity at hippocampal to prefrontal cortex synapses: Dual roles in working memory and consolidation. Hippocampus, 10, 438-446 Laroche, S., Jay, T. M., & Thierry, A. M. (1990). Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/ subicular region. Neuroscience Letters, 114, 184-190. Lee, E. H. Y., Lee, C. P., Wang, H. I., & Lin, W. R. (1993). Hippocampal CRF, NE, and NMDA system interactions in memory processing in the rat. Synapse, 14, 144-153. Leonard, C. M. (1969). The prefrontal cortex of the rat. Ⅰ. Cortical projection of the mediodorsal nucleus. Ⅱ. Efferent connections. Brain Research, 12, 321-343. Liang, K. C. (2006). Neural circuitry involved in avoidance learning and memory: The amygdala and beyond. In Jing, Q., Rosenzweig, M. R., d’Ydewalle, G., Zhang, H., Chen, H. C., & Zhang, K. (Eds.), Progress in psychological science around the world (pp.315-332). New York: Psychology Press. Liang, K. C., Hu, S. J., & Chang, S. C. (1996). Formation and retrieval of inhibitory avoidance memory: Differential roles of glutamate receptors in the amygdala and medial prefrontal cortex. Chinese Journal of Physiology, 39, 155-166. Liang, K. C., Lin, Y. C., Chen, D. Y., Hsieh, C. C., & Chen, H. C. (2001). Infusion of AMPA antagonists into the nucleus accumbens impaired avoidance memory: Interaction with the amygdala [Abstract]. Society for Neuroscience Abstract, 27, Abstract No. 84. 12. Liang, K. C., & McGaugh, J. L. (1983). Lesions of the stria terminalis attenuate the amnestic effect of amygdaloid stimulation on avoidance responses. Brain Research, 12, 309-318. Liang, K. C., McGaugh, J. L., & Yao, H. Y. (1990). Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage. Brain Research, 508, 225-233. Liu, I. Y. C., Lyons, W. E., Mamounas, L. A., & Thompson, R. F. (2004). Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. The Journal of Neuroscience, 24, 7958-7963. Lorenzini, C. A., Baldi, E., Bucherelli, C., & Tassoni, G. (1995). Time-dependent deficit of rat’s memory consolidation induced by tetrodotoxin injections into the caudate-putamen, nucleus accumbens, globus pallidus. Neurobiology of Learning and Memory, 63, 87-93. Malin, E. L., & McGaugh, J. L. (2006). Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. PNAS, 103, 1959-1963. Maren, S., Aharonov, G., & Fanselow, M. S. (1996). Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behavioral Neuroscience, 110, 718-726. Maren, S., Aharonov, G. & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 88, 261-274. Maren, S., & Fanselow, M. (1996). The amygdala and fear conditioning: Has the nut been cracked? Neuron, 16, 237-240. McGaugh, J. L. (2000). Memory- A century of consolidation. Science, 287, 248-251. McGaugh, J. L. (2002). Memory consolidation and the amygdala: a systems perspective. Trends in Neurosciences, 25, 456-461. Milad, M. R., Rauch, S. L., Pitman, R. K., & Quirk, G. J. (2006). Fear extinction in rats: Implications for human brain imaging and anxiety disorders. Biological Psychology, 73, 61-71. Mizumori, S. J. Y., Barnes, C. A., & McNaughton, B. L. (1989). Reversible inactivation of the medial septum: Selective effects on the spontaneous unit activity of different hippocampal cell types. Brain Research, 500, 99-106. Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. The Journal of Neuroscience, 24, 7015-7023. Morgan, M. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience, 109, 681-688. O'Keefe, J. & Speakman, A. (1987). Single unit activity in the rat hippocampus during a spatial memory task. Experimental Brain Research, 68, 1-27. Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. The Journal of Neuroscience, 9, 1465-1472. Packard, M. & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65-72. Packard, M. G., Cahill, L., & McGaugh, J. L. (1994). Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. PNAS, 91, 8477-8481. Parent, M. B., & McGaugh, J. L. (1994). Posttraining infusion of lidocaine into the amygdala basolateral complex impairs retention of inhibitory avoidance training. Brain Research, 661, 97-103. Paxinos, G. & Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates. Australi: Academic Press. Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 41, 245-251. Preuss, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 1-24. Riedel, G., Harrington, N. R., Hall, G., & Macphail, E. M. (1997). Nucleus accumbens lesions impair context, but not cue, conditioning in rats. Neuroreport, 7, 2477-2481. Robbins, T. W., & Everitt, R. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228-236. Roozendaal, B., de Quervain, D. J. F., Ferry, B., Setlow, B., & McGaugh, J. L. (2001). Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. The Journal of Neuroscience, 21, 2516-2525. Roozendaal, B., & McGaugh, J. L. (1997). Basolateral amygdala lesions block the memory –enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. European Journal of Neuroscience, 9, 76-83. Salamone, J. D. (1994). The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behavioural Brain Research, 61, 117-133. Schafe, G. E., Nadel, N. V., Sullivan, G. M., Harris, A. & LeDoux, J. E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learning & Memory, 6, 97-110. Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current opinion in Neurobiology, 7, 191-197. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews. Neuroscience, 1, 199-207. Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of Neuroscience, 12, 4595-4610. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29120 | - |
dc.description.abstract | 記憶痕跡是否形成及儲存於單一區域一直是個重大爭議。本實驗室過去的研究顯示情緒記憶形成需要依賴不同的神經結構共同運作。本論文研究利用抑制型躲避學習作業和情境恐懼制約兩種情緒記憶作業,探討在記憶穩固歷程中,大白鼠之海馬、前額皮質以及依核三者的互動情形。實驗1發現在抑制型躲避學習作業的訓練後,立即將正腎上腺素(0.2 μg)注射到背側海馬中,會促進大白鼠的記憶穩固歷程;若同時使用二丁卡因抑制前額皮質內側的功能,則正腎上腺素引發的促進記憶效果會被阻斷。同樣地,當背側海馬被二丁卡因抑制時會阻斷由正腎上腺素(0.1 μg)在前額皮質內側中所造成的促進記憶效果。實驗2在訓練後立即將正腎上腺素(2.0 μg)注射到背側海馬或前額皮質內側中,能夠促進情境恐懼制約作業之記憶穩固;過低(0.2 μg)或過高(5.0 μg)的劑量並不會對記憶表現造成影響,且使用正腎上腺素2.0 μg於訓練後六小時再注射到背側海馬或前額皮質內側中,亦不影響記憶。實驗3發現以二丁卡因抑制前額皮質內側,可阻斷正腎上腺素(2.0 μg)在背側海馬所導致的記憶增進效果。同樣地,抑制背側海馬的功能,亦逆轉了前額皮質內側中由正腎上腺素(2.0 μg)所造成的促進記憶效果。可見此二結構之間的互動對於情境恐懼記憶的形成十分重要。實驗4顯示閾下劑量的正腎上腺素同時注射到背側海馬與前額皮質內側,會顯著增進抑制型躲避學習記憶,但對於情境恐懼制約作業並無影響。實驗5進一步發現在抑制型躲避學習作業的訓練後,以二丁卡因抑制依核活動,正腎上腺素在背側海馬或前額皮質內側便無法促進記憶。由此推測在抑制型躲避學習的訊息處理過程中,海馬和前額皮質的訊息是匯送到依核進行處理。然而在情境恐懼制約作業中,抑制依核並不阻斷正腎上腺素注射在任一結構所造成的記憶增進效果。因此,在該作業中海馬與前額皮質兩者的訊息可能經由其他神經結構形成振盪的神經迴路。以上結果顯示大白鼠在形成恐懼記憶時,需要海馬與前額皮質的互動,但在操作式制約學習與古典條件化學習中,互動模式有所不同。 | zh_TW |
dc.description.abstract | Evidence from our laboratory has shown that affective memory processing engages many brain regions. However, how information flows within this widely distributed neural circuit is unclear. The hippocampus (DH), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) are implicated in processing affective memory. This study examined interaction among these regions during memory formation in two affective learning tasks. Male Wistar rats with chronic cannulae implanted in the DH, mPFC or NAc were trained on a one-trial step-through inhibitory avoidance task or a contextual fear conditioning task. Shortly after training, norepinephrine (NE) was given into one of the targets and 4% lidocaine was infused into another. Retention was tested 24 hrs after training. The results in inhibitory avoidance showed that infusion of 0.2 μg NE after training into DH enhanced memory and this effect was blocked by concurrent intra-mPFC infusion of lidocaine. Likewise, the memory enhancing effect of 0.1 μg NE infused into the mPFC was blocked by concurrent intra-DH infusion of lidocaine. In contextual fear conditioning, we found immediately posttraining infusion of 2.0 μg, but not other doses, of NE into DH or mPFC increased retention. However, the same treatment given 6 hrs after training had no effect on memory. These data suggest that NE infused into the DH and mPFC had dose- and time-dependent effects in memory consolidation of contextual fear conditioning. Furthermore, in contextual fear conditioning, the memory enhancing effect of NE given to the DH was blocked by simultaneously infusing lidocaine into mPFC and vice versa.
These findings suggest that during memory formation the DH and mPFC either form a reverberating circuit or send convergent inputs to a third target, such as the NAc. The latter possibility was favored by the findings in the inhibitory avoidance task that NE at sub-enhancing doses induced robust enhancement if simultaneously given into both regions. In contrast, results from the contextual fear conditioning showed that infusing sub-enhancing doses of NE into DH and mPFC simultaneously induced no additive effect. It implies that in this task information flow may form a reverberating circuit. A following-up experiment showed that the memory enhancing effect of NE infused into the DH or mPFC was blocked by inactivating the NAc with lidocaine in the inhibitory avoidance task, but not in the contextual fear conditioning task. These findings, taken together, suggest that NE in mPFC and DH during an inhibitory avoidance task modulated memory formation processes via the convergent inputs to the NAc, but they formed a reverberating circuit without engaging the NAc during formation of contextual fear memory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:41:14Z (GMT). No. of bitstreams: 1 ntu-96-R93227104-1.pdf: 1324428 bytes, checksum: 021229b4971acb0d3d0c3d5dfaa3291b (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目次
第一章 緒論..………………………………………………………………...1 一、引言………………………………………………………………….....1 二、參與記憶歷程的神經結構及其相關研究…………………………….4 三、情緒經驗的記憶形成:神經迴路或單一結構……………………...…13 四、海馬、前額皮質、以及依核的互動關係…………………………….18 五、本論文之研究議題和策略…………………………………………….23 第二章 實驗材料與方法…………………………………………………...27 一、受試者 …………………………………………………………….….27 二、藥品…………………………………………………………………….27 三、手術…………………………………………………………………….28 四、顱內藥物注射………………………………………………………….29 五、抑制型躲避學習作業(Inhibitory avoidance task)…………………..30 六、情境恐懼制約作業(Contextual fear conditioning)………………..32 七、自發性活動量測試(Locomotor activity)…………………………..34 八、電擊敏感度測試(Shock sensitivity)……………………………….34 九、灌流程序………………………………………………………………36 十、統計分析………………………………………………………………36 第三章 結果………………………………………………………………….38 一、實驗1背側海馬與前額皮質內側在正腎上腺素促進抑制型躲避記憶的互動……………………………………………………….………38 二、實驗2在背側海馬或前額皮質內側注射正腎上腺素影響情境恐懼制約記憶的劑量反應曲線………………..……………..………….....47 三、實驗3在情境制約恐懼作業中,背側海馬與前額皮質內側在正腎上腺素促進記憶效果上的互動……………………………………….50 四、實驗4閾下劑量之正腎上腺素同時注射於背側海馬與前額皮質內側對兩種作業記憶的影響……………….……….…………………...55 五、實驗5依核在不同恐懼記憶的穩固歷程中對於海馬與前額皮質之調節…………………………………………………………………….61 六、實驗6正腎上腺素對於大白鼠自發性活動量的影響…………….....67 七、實驗7抑制型躲避學習作業和情境恐懼制約作業之有效劑量對於大白鼠驚跳反應的影響………………………………………..……...70 八、組織切片……………………………………………………..……....78 第四章 綜合討論…………………………………………………………….79 一、研究方法上的考量………………………………………………….....81 二、海馬、前額皮質、以及依核在恐懼記憶的穩固歷程中所扮演的角色 …………………………………………………………………….86 三、記憶的神經基礎:單一結構或多重結構………………………...…92 四、情緒記憶相關神經機制與後續研究………………………………...95 參考文獻…………………………………………………………………….100 附表、附圖說明…………………………………………………………….116 附圖……………………………………………………………………...…..120 | |
dc.language.iso | zh-TW | |
dc.title | 恐懼記憶形成的神經機制:
海馬、前額皮質與依核的互動 | zh_TW |
dc.title | Interaction among the Hippocampus, Medial Prefrontal Cortex and Nucleus Accumbens during Formation of Affective Memory in Two Different Tasks. | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐嘉宏,廖瑞銘,蔡欣志,賴文崧 | |
dc.subject.keyword | 情緒記憶,穩固歷程,抑制型躲避學習,情境恐懼制約,正腎上腺素, | zh_TW |
dc.subject.keyword | emotional memory,inhibitory avoidance task,contextual fear conditioning task,norepinephrine, | en |
dc.relation.page | 138 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 心理學研究所 | zh_TW |
顯示於系所單位: | 心理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。