請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29107完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊晴光 | |
| dc.contributor.author | Kun-Hung Tsai | en |
| dc.contributor.author | 蔡昆宏 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:40:25Z | - |
| dc.date.available | 2014-08-12 | |
| dc.date.copyright | 2011-08-12 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | P. H. Woerlee, M. J. Knitel, R. van Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten, and T. A. Zegers-van Duijnhoven , “RF-CMOS performance trends,” IEEE Trans. Electron Devices, vol. 48, pp. 1776-1782, Aug. 2001.
C. H. Diaz, D. D. Tang, and J. Sun, “CMOS technology for MS/RF SOC,” IEEE Trans. Electron Devices, vol. 50, pp. 557-566, Feb. 2003. A. A. Abidi, “RF CMOS comes of age,” IEEE J. Solid-State Circuits, vol. 39, pp. 549-561, April 2004. C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, E. MacRobbie, “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE ISSCC Solid State Circuits Conf, 2003, vol. 1, pp. 90-480. M. Zargari, M. Terrovitis, S. Jen, B. Kaczynski, M. Lee, M. Mack, S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. Si, K. Singh, A. Tabatabaei, D. Weber, D. Su, and B. Wooley, “A single-chip dual-band tri-mode transceiver for IEEE 802.11a/b/g Wireless LAN,’’ IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004. P. Zhang, L. Der, D. Guo, I. Sever, T. Bourdi, C. Lam, A. Zolfaghari, J. Chen, D. Gambetta, B. Cheng, S. Gowder, S. Hart, L. Huynh, T. Nguyen, and B. Razavi, “A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18um CMOS,’’ IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1932-1939, Sep. 2005. T. Maeda, H. Yano, S. Hori, N. Matsuno, T. Yamase, T. Tokairin, R. Walkington, N. Yoshida, K. Numata, K. Yanagisawa, Y. Takahashi, M. Fujii, and H. Hida, “Low-power-consumption direction-conversion CMOS transceiver for multistandard 5-GHz wireless LAN systems with channel bandwidths of 5-20MHz, ’’ IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 357-383, Feb. 2006. Y. Palaskas, A. Ravi, S. Pellerano, B. R. Carlton, M. A. Elmala, R. Bishop, G. Banerjee, R. B. Nicholls, S. K. Ling, N. Dinur, S. S. Taylor, and K. Soumyanath, “A 5-GHz 108-Mb/s 2X2 MIMO transceiver RFIC with fully integrated 20.5-dBm P1dB power amplifiers in 90-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2746-2756, Dec. 2006. S. Wang, K.-H. Tsai, K.-K. Huang, S.-X. Li, H.-S. Wu, and C.-K. C. Tzuang, “Design of X-Band RF CMOS Transceiver for FMCW Monopulse Radar,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 1, pp. 61-70, Jan. 2009. T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nichikawa, and M. Aikawa, “Highly integrated three-dimensional MMIC technology applied to novel masterslice GaAs- and Si-MMIC’s,’’ IEEE Trans. Microwave Theory Tech., vol.32, no. 9, pp. 1334–1341, Sep. 1997. C. Warns, W. Menzel, and H. Schumacher, “Transmission lines and passive elements for multilayer coplanar circuits on silicon,’’ IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 616–622, May 1998. K. Hettak, G. Morin, and M. Stubbs, “The integration of thin-film microstrip and coplanar technologies for reduced-size MMICs,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 283–291, Jan. 2005. M. Chirala, and C. Nguyen, “Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits,’’ IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4218–4224, Dec. 2006. C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microwave Theory and Tech., vol. 54, no.12, pp. 4548- 4555, Dec. 2006. C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004. M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microwave Theory and Tech., vol. 55, no.12, part 1, pp. 2512-2520, Dec. 2007. S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,’’ in IEEE MTT-S Int. Microwave Symp. Dig., 2007, pp. 1023-1026. M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “A Ka-band CMOS Wilkinson power divider using synthetic quasi-TEM transmission lines,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 12, pp. 837- 839, Dec. 2007. M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “A CMOS 3-dB directional coupler using edge-coupled meandered synthetic transmission lines,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 771-774, June 2008. C.-W. Wang, H.-S. Wu, M.-J. Chiang, C.-K. C. Tzuang, “A 24 GHz CMOS miniaturized phase-invertible variable attenuator incorporating edge-coupled synthetic transmission lines,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2009, pp. 841-844. M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Artificial Synthesized Edge-Coupled Transmission Lines for Compact CMOS Directional Coupler Design,” IEEE Trans. Microwave Theory and Tech., vol. 57, no.12, pp. 3410-3417, Dec. 2009. H.-S. Wu, C.-W. Wang, and C.-K. C. Tzuang, “CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band,” IEEE Trans. Microwave Theory and Tech., vol. 58, no. 8, pp. 2084-2091, Aug. 2010. P. Pannier, E. Paleczny, P. Kennis, and F. Huret, “Mode Conversion at Discontinuities in a Microstrip Coupled Line Waveguide,” Microwave and Optical Technology Letters, vol. 17, no. 1, pp. 40-43, Dec. 1998. A. Hill, and V. K. Tripathi, “Analysis and modeling of coupled right angle microstrip bend discontinuities,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1989, pp. 1143-1146. A. Sabban, and K. C. Gupta, “A planar-lumped model for coupled microstrip lines and discontinuities,” IEEE Trans. Microwave Theory and Tech., vol. 20, no.2, pp. 245-252, Feb. 1992. D. E. Bockelman, and W.R. Eisenstadt, “Combined differential and common-mode scattering parameters: theory and simulation,” IEEE Trans. Microwave Theory and Tech., vol. 43, no.7, pp. 1530-1539, July 1995. M.-D. Wu, S.-M. Deng, R.-B Wu, and P. Hsu, “Full-Wave Characterization of the Mode Conversion in a Coplanar Waveguide Right-Angled Bend,” IEEE Trans. Microwave Theory and Tech., vol. 43, no.11, pp. 2532-2538, Nov. 1995. R. Senguttuvan, L. Hayden, A. Weisshaar, “Mode coupling in coplanar waveguide bends: a simple four-port model,” in 33rd Europena Microwave Conf., Mar. 2003, pp. 643-646. E. A. Soliman, G. A. E. Vandenbosch, E. Beyne, and R. P. Mertens, “Multimodal characterization of planar microwave structure,” IEEE Trans. Microwave Theory and Tech., vol. 52, no.1, pp. 175-182, Jan. 2004. S. H. Hall, and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, NJ: Wiley, 2009. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001. D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005 T. Emery, Y. Chin, H. Lee, and V. K. Tripathi, “Analysis and Design of Non Symmetrical Coupled Microstrip Directional Couplers,” IEEE Int. Microwave Symposium Digest, pp. 329-332, June, 1989. M. Engels and R. H. Jansen “Design of quasi-ideal Couplers using Multilayer MMIC Technology,” IEEE Int. Microwave Symposium Digest, pp. 17-21, June, 1996. K. Sachse and A. Sawicki, “Quasi-Ideal Multilayer Two- and Three-Strip Directional Couplers for Monolithic and Hybrid MIC’s,” IEEE Trans. Microwave Theory and Tech., vol. 47, no.9, pp. 1873-1882, Sep. 1990 V. K. Tripathi, “Asymmetric coupled transmission lines in an inhomogeneous medium,” IEEE Trans. Microwave Theory Tech., vol. 23, no. 9, pp. 734-739, Sep. 1975. S.-J. Wu, C.-H. Tsai, T.-L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009. C. Gazda, D. V. Ginste, H. Rogier, R.-B. Wu, and D. D. Zutter, “ A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips,” IEEE Trans. on Advanced Packaging, vol. 33, no. 4, Nov. 2010. G.-H. Shiue, W.-D. Guo, C.-M. Lin, and R.-B. Wu, “Noise Reduction Using Compensation Capacitance for Bend Discontinuities of Differential Transmission Lines,” IEEE Trans. on Advanced Packaging, vol. 29, no. 3, pp. 560-569, Aug. 2006. H. R. Goodarzi, M. Tayarani, and S. Khosravi, “Differential to common mode coupling in microstrip lines: calculation and improvement,” in Proc. 18th Int. Zurich Symp. Electromagn. Compatibil., Sep. 2007, pp. 293–296. A. A. Omar, Y. L. Chow, L. Roy, and M. G. Stubbs, “Effects of air-bridges and mitering on coplanar waveguide 90° bends: theory and experiment,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1993, pp. 823-826. P.M. Watson, and K. C. Gupta, “Design and optimization of CPW circuits using EM-ANN models for CPW components,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp.2515-2523, Dec. 1997. T. M. Weller, R. M. Henderson, K. J. Herrick, S. V. Robertson, R. T. Kihm, and L. P. B. Katehi, “Three-dimensional high-frequency distribution networks-Part I: optimization of CPW discontinuities,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 10, pp.1635-1642, Oct. 2000. R. N. Simons, and G. E. Ponchak, “Modeling of some coplanar waveguide discontinuities,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp.1796-1803, Dec. 1988. J.H. Wang, and H. Zhang, “Velocity Compensated Coplanar Wave Guide Bend for Odd-Mode Suppression,” Microwabe and Optical Technology Letters, vol. 50, no. 5, May 2008. C. Cho, and K. C. Gupta “A new design procedure for single-layer and two-layer three-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2514-2519, Dec. 1998. H. M. Lee, C. M. Tsai, “Exact synthesis of broadband three-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 1, pp.140-148, Jan. 2009. J. Lange, “Interdigital stripline quadrature hybrid,” IEEE Trans. Microwave Theory Tech., vol. 17, no. 12, pp.1150-1151, Dec. 1969. J.R. Long, “Monolithic Transformer for Silicon RF IC Design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1381, Sep. 2000. A. Boulouard, and M. LeRouzic, “Analysis of rectangular spiral transformers for MMIC application,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 8, pp.1257-1260, Aug. 1989 J. J. Zhou, and D. J. Allstot, “Monolithic transformer and their application in a differential CMOS RF low-noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2020-2027, Dec. 1998. G. F. Avitabile, A. Cidronali, C. Salvador, M. Speciale, “A compact 90° coupler for ISM applications,” IEEE Int. Microwave Symposium Dig., pp. 281-284, June, 1997. A. Tripathi, and V. K. Tripathi, “A configuration-oriented SPICE model for multiconductor transmission lines in an inhomogeneous medium” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 1997-2005, Dec. 1998. C. R. Paul, Analysis of Multiconductor Transmission Lines, 2nd ed.. NJ: J. Wiley, 2008. D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005. R. H. Jansen, “Fast accurate hybrid mode computation of nonsymmetrical coupled microstrip characteristics,” 7th European Microwave Conference, 1977, pp. 135-139, Sep. 1977. E. A. F. Abdallah, and N. A. El-Deeb, “Technical memorandum. Fast, accurate computational method for asymmetric coupled microstrip parameters,” IEE. Proceedings H, Microwave, Antennas and Propagation, vol. 132, issue 1, pp. 69-70, Feb. 1985. L. E. Spence, A. J. Insel, and S. H. Friedberg, Elementary Linear Algebra, Prentice Hall, 2000. Erwin Kreyszig, Advanced Enginering, 8th ed., Wiley, 2008. S. Wang, H.-S. Wu, and C.-K. C. Tzuang, “Modeling and suppressing substrate coupling of RF CMOS FMCW sensor incorporating synthetic quasi-TEM transmission lines,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 1939-1942. M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Design of CMOS spiral inductors for effective broadband shielding,” in EuMC European Microwave Conf., Sep. 2006, pp.48-51. W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992. R. K. Mongia, I. J. Bahl, P. Bhartia, J. Hong, RF and Microwave Coupled-Line Circuits, 2nd ed., Artech House, 2007. S. Yamamoto, T. Azakami, and K. Itakura, “Coupled strip transmission line with three center conductors,” IEEE Trans. Microwave Theory Tech., vol. 14, no. 10, pp. 446-461, Oct. 1966. V. K. Tripathi, “On the analysis of symmetrical three-line microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 25, no. 9, pp. 726-729, Sep. 1977. D. Pavlidis, and H. L. Hartnagel, “The design and performance of three-line microstrip couplers,” IEEE Trans. Microwave Theory Tech., vol. 24, no. 10, pp. 631-640, Oct. 1976. R. J. Collier, and N. A. El-Deeb, “On the use of a microstrip three-line system as a six-port reflectometer,” IEEE Trans. Microwave Theory Tech., vol. 27, no. 10, pp. 847-853, Oct. 1979. E. Abdallah, and N. A. El-Deeb, “On the analysis and design of three coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 11, pp. 1217-1222, Nov. 1985. T. Kitazawa, and Y. Hayashi, “Asymmetrical three-line coupled striplines with anisotropic substrates,” IEEE Trans. Microwave Theory Tech., vol. 34, no. 7, pp. 767-772, July 1986. A. M. Abbosh, “Design of ultra-wideband three-way arbitrary power dividers,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 1, Jan. 2008. S.L. March, “Phase velocity compensation in parallel-coupled microstrip lines,” IEEE MTT-S Int. Microwave Symp. Dig., 1982, pp. 410-412. M. Dydyk, “Microstrip directional couplers with ideal performance via single-element compensation,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 6, pp. 956-964, June 1999. S. Uysal, and H. Aghvami, “Synthesis, design, and construction of ultra-wide-band nonuniform quadrature directional couplers in inhomogeneous media,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 6, pp. 969–976, 1989. S.-F. Chang, J.-L. Chen, W.-L. Chan, and H.-P. Hwang, “A new MMIC broadside coupler using an array of air-bridges for directivity enhancement,” IEEE Microwave and Wireless Compon. Lett., vol. 14, no. 6, pp. 304-306, June 2004. J.-L. Chen, S.-F. Chang, Y.-H. Jeng and C.-T. Wu, “A high-directivity microstrip directional coupler with feedback compensation,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp.101-104. R. C. Frye, S. Kapur, and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 550-555, Mar. 2003. C.-S. Kim, S.-W. Lee, P.-L- Lee, H.-S. Kim, J.-S. Park, and D. Ahn, “Design of re-entrant mode microstrip directional coupler for high directivity performance,” in Proc. of Asia-Pacific Microwave Conference, Dec. 2000, pp.1286-1289. S.-M. Wang, C.-H. Chen, and C.-Y. Chang, “A study of meandered microstrip with high directivity,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp.63-66. L. Su, T. Itoh, and J. Rivera, “Design of an overlay directional coupler by a full-wave analysis,” IEEE Trans. Microwave Theory Tech., vol. 31, no. 12, pp. 1017-1022, Dec. 1983. P.-C. Hsu, C. Nguyen, and M. Kintis, “Uniplanar Broad-Band Push-Pull FET Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 45 no. 12, pp. 2150-2152, Dec. 1997. S.A. Mass, and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE Microwave and Millimeter-Wave Circuits Symp. Dig., May 1994, pp.175-178. R. Schwindt, and C. Nguyen, “Computer aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 7, pp.1429-1434, July, 1994. M. N. Tutt, H. Q. Tserng, and A. Ketterson, “A low loss, 5.5 GHz-20 GHz monolithic balun,” IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp.933-936. C.-W. Tang, and C.-Y. Chang, “A semi-lumped balun fabricated by low temperature co-fired ceramic,” IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 2201-2204. M.-C. Tsai, “A new compact wideband balun,” IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp.141-143. Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Letter, vol. 20, no. 4, pp. 182-184, April 1999. S.-C. Tseng, C. Meng, C.-H. Chang, C.-K. Wu, and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand Balun using Standard Silicon IC Process,” IEEE Trans. Microwave Theory and Tech., vol. 54, no.12, pp. 4362-4371, Dec. 2006. M.-J. Chiang, H.-S. Wu, C.-K. C. Tzuang, “A compact CMOS Marchand balun incorporating meandered multilayer edge-coupled transmission lines,” IEEE MTT-S Int. Microwave Symp. Dig., 2009, pp. 125-128. E. M. T. Jones, and J. T. Bolljahn, “Coupled-Strip-Transmission-Line Filters and Directional Couplers,” IRE Trans. on Microwave Theory and Tech., vol. 4, no. 2, pp. 75-81, April 1956. K. C. Gupta, R. Garg, R. Chadha, Computer-Aided Design of Microwave Circuits, Artech House, 1981. C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and J. Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4548–4555, Dec. 2006. K.-K Huang, M.-J. Chiang, and C.-K. C. Tzuang, “A 3.3 mW K-band 0.18-um 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microwave Wireless Compon. Lett., vol. 18, no. 2, pp.94-96, Feb. 2008. Z. Q. Yang, T. Yang, and Y. Liu, “Analysis and Design of a Reduced-Size Marchand Balun,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 9, pp.1169-1175, 2007. S.-S. Myoung, and J.-G. Yook, “Miniaturisation and harmonic suppression method of parallel coupled-line filters using lumped capacitors and grounding,” Electronics Letters, vol. 41, no. 15, pp. 849-851, July 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29107 | - |
| dc.description.abstract | 本篇論文係探討在應用於互補金氧半導體製程中的合成耦合傳輸線的分析、設計與應用。該耦合傳輸線在設計時為了電路縮小化採用了曲折繞線的設計,因此傳統的奇-偶模分析對於此一曲折繞線的非理想對稱的結構並不完全適用。在本論文的第一部分中,非對稱的耦合線模型被使用來分析此一結構,且參數萃取的過程是來自非對稱耦合線的ABCD參數與S參數之間的關係來完成,該模型中的Rc以及Rp兩參數可用以量化地定義耦合線結構的對稱性。此一參數萃取流程應用於一個0.18微米的互補金氧半導體製程上的3 dB方向耦合器,分析結果可以量化地表現出耦合線的對稱性仍然可以很好地被維持住,一些可能造成耦合線對稱性下降的結構也可應用此一模型分析,例如耦合較弱的耦合線及轉角的方向數不同。一種適合在互補金氧半導體上應用的等長度轉角設計也被提出且證實可改進多種不同耦合線結構的對稱性。三條線的耦合線也用類似的方法進行分析,同樣有兩種試圖改善該結構對稱性的三條線轉角也被設計出來並可比較其對不同模態的效果。
第五章中提出對一個在0.18微米的互補金氧半導體製程上使用多導體的合成傳輸線與點對稱螺旋型的高方向性的方向耦合器的設計與分析。此一非均勻的點對稱螺旋型電路採用平行耦合線來模型,使用前述的非對稱耦合線的模型來分析, 可看出此電路只有些微地非對稱,因此這個分析可適用於分析此一非均勻而有空間上的對稱的電路,透過進一步分析採用非對稱的模型會較使用對稱的耦合線模型更能準確的預測這個方向耦合器的方向性。 第六章中描述一種新型的Marchand平衡不平衡轉換器(balun),此一電路包含合成耦合線以及主動電路,在該電路中適當的連結負電阻電路即可有效的補償耦合線造成的損耗。整體電路特性的推導也已提出。互補式的負阻抗產生器可補償耦合線的損耗並且降低所需的線長。一個操作在24 GHz的Marchand Balun 在0.18微米的互補金氧半導體製程上被設計完成,並可以達到預期的無損耗且反相位的結果且面積為240微米×270微米。 | zh_TW |
| dc.description.abstract | This dissertation presents the analysis, design, and application of the CMOS synthetic coupled transmission lines. The proposed coupled lines are designed in a meandered form for circuit miniaturization. The conventional even-odd mode analysis is not appropriate to apply due to the meandering structure, which is asymmetric. In the first part of this dissertation, the asymmetric coupled-line model is adopted for analyses and the equivalent model parameters are extracted based on asymmetric coupled-line ABCD parameters and S parameters. The Rc and Rp in the model is available for quantitatively define the symmetry of coupled lines. The proposed extraction procedure is then applied on a 3-dB directional coupler on 0.18-um CMOS technology. The results quantitatively show that symmetry of the coupled lines is well maintained. Symmetry of other coupled-line structures that degrade coupled-line symmetry such as loosely coupled lines and different bend direction are also analyzed based on this model. An equal-length bend design suitable for the CMOS synthetic coupled lines is proposed and has managed to improve symmetry on various structures. Three-line coupled lines have also been analyzed with the similar procedure. Two kinds of three-line bends are designed and compared their utility on different modes.
Chapter 5 presents the design and analysis of a high directivity coupler using the multi-conductor synthetic lines and interwound-spiral shape in 0.18-um CMOS technology. Parallel coupled lines are used to model the non-uniform point-symmetric interwound spirals. By applying a more general asymmetric coupled-line model, the circuit appears to be slightly asymmetric. The interwound spiral coupler demonstrates that the analysis is capable to be applied on structurally non-uniform circuits with space symmetry. The interwound spirals can be modeled more accurately as asymmetric coupled lines than symmetric ones in the design of high directivity directional couplers. Chapter 6 describes a novel Marchand balun consisting of synthetic coupled lines and active circuits. By properly placing a negative resistance circuit in the Marchand balun, the active circuit is able to compensate the loss of coupled lines. Derivation of the proposed Marchand balun characteristics is provided. The complementary cross-coupled pair compensates the loss of coupled lines and reduces the total line-length required. The proposed Marchand balun operated on 24 GHz is designed and fabricated on 0.18-um CMOS technology. It achieves the desired lossless and out-of-phase balun performance with an area of 240 um × 270 um. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:40:25Z (GMT). No. of bitstreams: 1 ntu-100-F94942005-1.pdf: 4072746 bytes, checksum: dcfc222c6a3f05ef1a92d63246ee28f5 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction ------------------------------------------------------------------- 1
1.1 Motivation ------------------------- --------------------------------------------- 1 1.2 Introduction --------------------------------------------------------------------- 4 1.2.1 Mode conversion -------------------------------------------------------- 4 1.2.2 The Meandered Synthetic Coupled Lines ---------------------------- 5 1.2.3 Improve Coupled-Lines Symmetry ----------------------------------- 7 1.2.4 Interwound Spiral Coupler --------------------------------------------- 8 1.2.5 Marchand Balun with Active Compensation ------------------------ 9 1.3 Focus of the Dissertation-------------------------------------------------------10 1.4 List of Contributions ---------------------------------------------------------- 11 1.5 Organization of This Dissertation ------------------------------------------- 12 Chapter 2 Asymmetric Coupled-Line Analysis ------------------------------- 17 2.1 Asymmetric Coupled-Line Model ------------------------------------------ 18 2.1.1 Symmetric and Asymmetric Coupled Lines ------------------------- 19 2.1.2 ABCD parameters of the Coupled Lines ----------------------------- 19 2.2 Extraction Procedure ---------------------------------------------------------- 22 2.2.1 Transformation of ABCD Parameters -------------------------------- 22 2.2.2 Extraction of the Coupled-Line Parameters ------------------------- 23 2.3 Practical Discussion on Extraction Results -------------------------------- 25 2.3.1 Eigenvectors Selection ------------------------------------------------- 25 2.3.2 Solution Order ---------------------------------------------------------- 26 2.3.3 Orthogonality of the Eigenvectors------------------------------------ 26 2.3.4 Condition of Real Rc and Rp------------------------------------------- 27 2.4 Multi-Conductor Coupled Lines -------------------------------------------- 28 2.4.1 ABCD Parameters of Multi-Conductor Coupled Lines ----------- 28 2.4.2 Extraction Procedure --------------------------------------------------- 29 Chapter 3 Symmetry Analysis of the Synthetic Coupled Lines --------- 35 3.1 Synthetic Coupled Lines in CMOS Proces -------------------------------- 36 3.1.1 The Complementary-Conducting-Strip Transmission Line ------ 36 3.1.2 The Synthetic Coupled Transmission Lines ------------------------ 38 3.2 A CMOS 3-dB Directional Coupler ---------------------------------------- 38 3.2.1 Design of Directional Coupler ---------------------------------------- 38 3.2.2 Simulation and Measurement ----------------------------------------- 39 3.3 Asymmetric Coupled Line Analysis --------------------------------------- 40 3.3.1 Even-Odd Mode Analysis -------------------------------------------- 40 3.3.2 Asymmetric Coupled-Line Analysis -------------------------------- 41 3.3.3 Verification of the Asymmetric Coupled-Line Mode -------------- 41 3.3.4 Effect of Rc and Rp Variation ------------------------------------------42 3.4 Symmetry Defined by S-Parameter Comparison ------------------------- 44 3.5 Summary ----------------------------------------------------------------------- 45 Chapter 4 Structural Effect on Maintaining Coupled-Line Symmetry -------------------------------------------------------------------------------------- 55 4.1 Loosely Coupled Lines ------------------------------------------------------- 56 4.2 Number of Clockwise and Counterclockwise Bends -------------------- 57 4.3 Equal-Length Bends ---------------------------------------------------------- 59 4.4 Symmetry of Three-Line Coupled Lines ----------------------------------- 61 4.4.1 Analysis of the Three-Line Coupled Lines -------------------------- 61 4.4.2 Structure of the Three-Line Coupled Lines ------------------------- 62 4.4.3 Symmetry of the Three-Line Coupled Lines ------------------------ 63 4.4 Summary ------------------------------------------------------------------------ 64 Chapter 5 High Directivity Coupled With Multi-Conductor Synthetic Lines ----------------------------------------------------------------------------- 79 5.1 Overview ------------------------------------------------------------------------ 80 5.2 Model and Design of CMOS Directional Couplers ----------------------- 82 5.2.1 Model of the Interwound Spirals ------------------------------------- 82 5.2.2 Coupled-Line Directional Coupler Synthesis ------------------------- 83 5.3 Circuit Realization ------------------------------------------------------------ 83 5.4 Analysis ------------------------------------------------------------------------- 84 5.4.1 The Even-Odd Mode Analysis ---------------------------------------- 84 5.4.2 The Asymmetric Coupled-Line Analysis ---------------------------- 85 5.5 Summary ----------------------------------------------------------------------- 86 Chapter 6 Design of Marchand Balun with Negative Resistance Compensation --------------------------------------------------------------- 93 6.1 Overview ----------------------------------------------------------------------- 94 6.2 Marchan Balun Design ------------------------------------------------------- 95 6.2.1 Ideal Marchand Balun -------------------------------------------------- 95 6.2.2 Proposed Marchand Balun -------------------------------------------- 96 6.3 Realization of the CMOS Marchand Balun ------------------------------ 100 6.3.1 Negative Resistance Circuit ------------------------------------------ 100 6.3.2 Incorporation of the Synthetic Coupled Lines --------------------- 101 6.3.3 Implementation of the Marchand balun ---------------------------- 102 6.4 Summary ---------------------------------------------------------------------- 104 Chapter 7 Conclusions ---------------------------------------------------------------- 113 7.1 Summary --------------------------------------------------------------------- 113 7.2 Suggestions for Further Research ----------------------------------------- 115 References ---------------------------------------------------------------------------------- 117 Publication List --------------------------------------------------------------------------- 125 | |
| dc.language.iso | en | |
| dc.subject | 合成波導 | zh_TW |
| dc.subject | 金氧半導體 | zh_TW |
| dc.subject | 耦合傳輸線 | zh_TW |
| dc.subject | 方向耦合器 | zh_TW |
| dc.subject | 微波電路 | zh_TW |
| dc.subject | Synthetic waveguide | en |
| dc.subject | microwave circuit | en |
| dc.subject | directional coupler | en |
| dc.subject | coupled lines | en |
| dc.subject | CMOS | en |
| dc.title | 互補金氧半導體合成耦合傳輸線的分析、設計與應用 | zh_TW |
| dc.title | Analysis, Design, and Applications of CMOS Synthetic Coupled Transmission Lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 許博文,吳瑞北,林育德,張志揚,蔡智明,張嘉展 | |
| dc.subject.keyword | 合成波導,金氧半導體,耦合傳輸線,方向耦合器,微波電路, | zh_TW |
| dc.subject.keyword | Synthetic waveguide,CMOS,coupled lines,directional coupler,microwave circuit, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
