請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28953
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂俊宏(June-Horng Lue) | |
dc.contributor.author | Ming-Chuan Chang | en |
dc.contributor.author | 張銘娟 | zh_TW |
dc.date.accessioned | 2021-06-13T00:31:22Z | - |
dc.date.available | 2007-08-08 | |
dc.date.copyright | 2007-08-08 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-26 | |
dc.identifier.citation | Abbadie C, Brown JL, Mantyh PW, Basbaum AI, 1996. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 70: 201-209.
Akopian AN, Sivilotti L, Wood JN, 1996. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257-262. Allen BJ, Li J, Menning PM, Rogers SD, Ghilardi J, Mantyh PW, Simone DA, 1999. Primary afferent fibers that contribute to increased substance P receptor internalization in the spinal cord after injury. J. Neurophysiol. 81: 1379-1390. Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV, 1995. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7: 1484-1494. Barde YA, 1989. Trophic factors and neuronal survival. Neuron 2: 1525-1534. Bennett AD, Chastain KM, Hulsebosch CE, 2000. Alleviation of mechanical and thermal allodynia by CGRP(8-37) in a rodent model of chronic central pain. Pain 86: 163-175. Bennett GJ, Xie YK, 1988. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87-107. Biella G, Panara C, Pecile A, Sotgiu ML, 1991a. Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res. 559: 352-356. Biella G, Panara C, Pecile A, Sotgiu ML, 1991b. Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res. 559: 352-356. Bowles WR, Sabino M, Harding-Rose C, Hargreaves KM, 2004. Nerve growth factor treatment enhances release of immunoreactive calcitonin gene-related peptide but not substance P from spinal dorsal horn slices in rats. Neurosci. Lett. 363: 239-242. Bredesen DE, Rabizadeh S, 1997. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 20: 287-290. Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD, 1992. Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. 592: 283-297. Carter BD, Lewin GR, 1997. Neurotrophins live or let die: does p75NTR decide? Neuron 18: 187-190. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D, 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824. Chabal C, Russell LC, Burchiel KJ, 1989. The effect of intravenous lidocaine, tocainide, and mexiletine on spontaneously active fibers originating in rat sciatic neuromas. Pain 38: 333-338. Chaplan SR, Bach FW, Shafer SL, Yaksh TL, 1995. Prolonged alleviation of tactile allodynia by intravenous lidocaine in neuropathic rats. Anesthesiology 83: 775-785. Cho HJ, Park EH, Bae MA, Kim JK, 1996. Expression of mRNAs for preprotachykinin and nerve growth factor receptors in the dorsal root-ganglion following peripheral inflammation. Brain Res. 716: 197-201. Coderre TJ, Katz J, Vaccarino AL, Melzack R, 1993. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52: 259-285. Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, Thoenen H, 1987. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326: 353-358. Deng YS, Zhong JH, Zhou XF, 2000. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp. Neurol. 164: 344-350. DeVane CL, 2001. Substance P: a new era, a new role. Pharmacotherapy 21: 1061-1069. Devor M, Govrin-Lippmann R, Angelides K, 1993. Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J. Neurosci. 13: 1976-1992. Devor M, Keller CH, Deerinck TJ, Levinson SR, Ellisman MH, 1989. Na+ channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus. Neurosci. Lett. 102: 149-154. Devor M, Wall PD, Catalan N, 1992. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48: 261-268. Donaldson LF, Harmar AJ, McQueen DS, Seckl JR, 1992. Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. Brain Res. Mol. Brain Res. 16: 143-149. Donnerer J, Schuligoi R, Stein C, 1992. Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 49: 693-698. Elcock C, Boissonade FM, Robinson PP, 2001. Changes in neuropeptide expression in the trigeminal ganglion following inferior alveolar nerve section in the ferret. Neuroscience 102: 655-667. Elliott AA, Elliott JR, 1993. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J. Physiol 463: 39-56. Fitzgerald M, Wall PD, Goedert M, Emson PC, 1985. Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res. 332: 131-141. Fukuda H, Kasuda H, Nemoto K, Shimizu R, 1994. [Intravenous lidocaine in the treatment of post treatment neuropathy]. Masui 43: 941-943. Goedert M, Fine A, Hunt SP, Ullrich A, 1986. Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer's disease. Brain Res. 387: 85-92. Hannila SS, Kawaja MD, 2003. Distribution of central sensory axons in transgenic mice overexpressing nerve growth factor and lacking functional p75 neurotrophin receptor expression. Eur. J. Neurosci. 18: 312-322. Hempstead BL, 2002. The many faces of p75NTR. Curr. Opin. Neurobiol. 12: 260-267. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV, 1991. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350: 678-683. Herzberg U, Eliav E, Dorsey JM, Gracely RH, Kopin IJ, 1997. NGF involvement in pain induced by chronic constriction injury of the rat sciatic nerve. Neuroreport 8: 1613-1618. Heumann R, Korsching S, Bandtlow C, Thoenen H, 1987. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell Biol. 104: 1623-1631. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z, 1994. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 17: 22-30. Holtzman DM, Li Y, Parada LF, Kinsman S, Chen CK, Valletta JS, Zhou J, Long JB, Mobley WC, 1992. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 9: 465-478. Jang JH, Nam TS, Paik KS, Leem JW, 2004. Involvement of peripherally released substance P and calcitonin gene-related peptide in mediating mechanical hyperalgesia in a traumatic neuropathy model of the rat. Neurosci. Lett. 360: 129-132. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ, 2002. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36: 57-68. Jiang ZG, Smith RA, 1995. Regulation by nerve growth factor of neuropeptide phenotypes in primary cultured sensory neurons prepared from aged as well as adult mice. Brain Res. Dev. Brain Res. 90: 190-193. Kajander KC, Wakisaka S, Bennett GJ, 1992. Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci. Lett. 138: 225-228. Kantner RM, Goldstein BD, Kirby ML, 1986. Regulatory mechanisms for substance P in the dorsal horn during a nociceptive stimulus: axoplasmic transport vs electrical activity. Brain Res. 385: 282-290. Kessler JA, Black IB, 1980. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc. Natl. Acad. Sci. U. S. A 77: 649-652. Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA, 2002. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J. Neurosci. 22: 9086-9098. Korsching S, Thoenen H, 1983a. Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci. Lett. 39: 1-4. Korsching S, Thoenen H, 1983b. Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci. Lett. 39: 1-4. Laird JM, Bennett GJ, 1993. An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J. Neurophysiol. 69: 2072-2085. Lawson SN, McCarthy PW, Prabhakar E, 1996. Electrophysiological properties of neurones with CGRP-like immunoreactivity in rat dorsal root ganglia. J. Comp Neurol. 365: 355-366. Lee SE, Shen H, Taglialatela G, Chung JM, Chung K, 1998b. Expression of nerve growth factor in the dorsal root ganglion after peripheral nerve injury. Brain Res. 796: 99-106. Lee SE, Shen H, Taglialatela G, Chung JM, Chung K, 1998a. Expression of nerve growth factor in the dorsal root ganglion after peripheral nerve injury. Brain Res. 796: 99-106. Lee Y, Takami K, Kawai Y, Girgis S, Hillyard CJ, MacIntyre I, Emson PC, Tohyama M, 1985. Distribution of calcitonin gene-related peptide in the rat peripheral nervous system with reference to its coexistence with substance P. Neuroscience 15: 1227-1237. Lewin GR, Mendell LM, 1993. Nerve growth factor and nociception. Trends Neurosci. 16: 353-359. Lewin GR, Mendell LM, 1994. Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J. Neurophysiol. 71: 941-949. Lewin GR, Ritter AM, Mendell LM, 1992. On the role of nerve growth factor in the development of myelinated nociceptors. J. Neurosci. 12: 1896-1905. Lewin GR, Ritter AM, Mendell LM, 1993. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J. Neurosci. 13: 2136-2148. Li L, Xian CJ, Zhong JH, Zhou XF, 2003. Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues: a mechanism in neuropathic pain. Mol. Cell Neurosci. 23: 232-250. Lindsay RM, Harmar AJ, 1989. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337: 362-364. Lindsay RM, Shooter EM, Radeke MJ, Misko TP, Dechant G, Thoenen H, Lindholm D, 1990. Nerve Growth Factor Regulates Expression of the Nerve Growth Factor Receptor Gene in Adult Sensory Neurons. Eur. J. Neurosci. 2: 389-396. Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H, 1992. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc. Natl. Acad. Sci. U. S. A 89: 648-652. Lyu YS, Park SK, Chung K, Chung JM, 2000. Low dose of tetrodotoxin reduces neuropathic pain behaviors in an animal model. Brain Res. 871: 98-103. Ma W, Bisby MA, 1998a. Increase of calcitonin gene-related peptide immunoreactivity in the axonal fibers of the gracile nuclei of adult and aged rats after complete and partial sciatic nerve injuries. Exp. Neurol. 152: 137-149. Ma W, Bisby MA, 1998b. Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur. J. Neurosci. 10: 2388-2399. Malcangio M, Garrett NE, Tomlinson DR, 1997b. Nerve growth factor treatment increases stimulus-evoked release of sensory neuropeptides in the rat spinal cord. Eur. J. Neurosci. 9: 1101-1104. Malcangio M, Garrett NE, Tomlinson DR, 1997a. Nerve growth factor treatment increases stimulus-evoked release of sensory neuropeptides in the rat spinal cord. Eur. J. Neurosci. 9: 1101-1104. Mendell LM, 1999b. Neurotrophin action on sensory neurons in adults: an extension of the neurotrophic hypothesis. Pain Suppl 6: S127-S132. Mendell LM, 1999a. Neurotrophin action on sensory neurons in adults: an extension of the neurotrophic hypothesis. Pain Suppl 6: S127-S132. Mendell LM, Johnson RD, Munson JB, 1999. Neurotrophin modulation of the monosynaptic reflex after peripheral nerve transection. J. Neurosci. 19: 3162-3170. Miki K, Iwata K, Tsuboi Y, Sumino R, Fukuoka T, Tachibana T, Tokunaga A, Noguchi K, 1998. Responses of dorsal column nuclei neurons in rats with experimental mononeuropathy. Pain 76: 407-415. Obata K, Katsura H, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Noguchi K, 2006. Suppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury. J. Neurosci. 26: 11974-11986. Olson L, Backman L, Ebendal T, Eriksdotter-Jonhagen M, Hoffer B, Humpel C, Freedman R, Giacobini M, Meyerson B, Nordberg A, ., 1994. Role of growth factors in degeneration and regeneration in the central nervous system; clinical experiences with NGF in Parkinson's and Alzheimer's diseases. J. Neurol. 242: S12-S15. Otten U, Goedert M, Mayer N, Lembeck F, 1980. Requirement of nerve growth factor for development of substance P-containing sensory neurones. Nature 287: 158-159. Palmatier MA, Hartman BK, Johnson EM, Jr., 1984. Demonstration of retrogradely transported endogenous nerve growth factor in axons of sympathetic neurons. J. Neurosci. 4: 751-756. Petruska JC, Mendell LM, 2004. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci. Lett. 361: 168-171. Ren K, Thomas DA, Dubner R, 1995. Nerve growth factor alleviates a painful peripheral neuropathy in rats. Brain Res. 699: 286-292. Rich KM, Luszczynski JR, Osborne PA, Johnson EM, Jr., 1987. Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury. J. Neurocytol. 16: 261-268. Ritter AM, Lewin GR, Kremer NE, Mendell LM, 1991b. Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature 350: 500-502. Ritter AM, Lewin GR, Kremer NE, Mendell LM, 1991a. Requirement for nerve growth factor in the development of myelinated nociceptors in vivo. Nature 350: 500-502. Ruiz G, Ceballos D, Banos JE, 2004. Behavioral and histological effects of endoneurial administration of nerve growth factor: possible implications in neuropathic pain. Brain Res. 1011: 1-6. Sebert ME, Shooter EM, 1993. Expression of mRNA for neurotrophic factors and their receptors in the rat dorsal root ganglion and sciatic nerve following nerve injury. J. Neurosci. Res. 36: 357-367. Shen H, Chung JM, Chung K, 1999a. Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Brain Res. Mol. Brain Res. 64: 186-192. Shen H, Chung JM, Coggeshall RE, Chung K, 1999c. Changes in trkA expression in the dorsal root ganglion after peripheral nerve injury. Exp. Brain Res. 127: 141-146. Shen H, Chung JM, Coggeshall RE, Chung K, 1999b. Changes in trkA expression in the dorsal root ganglion after peripheral nerve injury. Exp. Brain Res. 127: 141-146. Skoff AM, Resta C, Swamydas M, Adler JE, 2003. Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) regulate substance P release in adult spinal sensory neurons. Neurochem. Res. 28: 847-854. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M, 1994. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246-249. Taiwo YO, Levine JD, Burch RM, Woo JE, Mobley WC, 1991. Hyperalgesia induced in the rat by the amino-terminal octapeptide of nerve growth factor. Proc. Natl. Acad. Sci. U. S. A 88: 5144-5148. Verge VM, Merlio JP, Grondin J, Ernfors P, Persson H, Riopelle RJ, Hokfelt T, Richardson PM, 1992. Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF. J. Neurosci. 12: 4011-4022. Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T, 1995. Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J. Neurosci. 15: 2081-2096. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM, 1979. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7: 103-111. Wiesenfeld-Hallin Z, Hokfelt T, Lundberg JM, Forssmann WG, Reinecke M, Tschopp FA, Fischer JA, 1984. Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci. Lett. 52: 199-204. Woolf CJ, Mannion RJ, 1999. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353: 1959-1964. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J, 1994. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62: 327-331. Zhou XF, Deng YS, Xian CJ, Zhong JH, 2000. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur. J. Neurosci. 12: 100-105. Zhou XF, Rush RA, 1996. Endogenous nerve growth factor is required for regulation of the low affinity neurotrophin receptor (p75) in sympathetic but not sensory ganglia. J. Comp Neurol. 372: 37-48. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28953 | - |
dc.description.abstract | Nerve growth factor(NGF)為神經滋養物質(neurotrophin)家族的一員,根據許多研究得知周邊神經損傷後,它往往與背根神經節中神經元表現型的改變,乃至於功能上的調整有所關聯。雖然已有相當多的研究以後肢周邊神經損傷的模式為題材,報導有關神經損傷後NGF、及其相關接受器和神經胜肽的變化,但是與正中神經損傷有關的研究則相當缺乏。因此本研究以正中神經截斷的神經瘤模式為主,並運用免疫染色方法、西方免疫轉漬法、電子顯微鏡及藥物的處理等方式,來探討背根神經節中,神經生長因子(nerve growth factor, NGF)及其接受器,TrkA及p75,還有其他相關的神經胜肽,如substance P及CGRP的表現變化情形。
我們將實驗動物進行正中神經截斷後,爾後將它們分別存活為1天、3天、1週、2週及四週不同的時間點及正常神經未損傷等組別,探討其第六頸椎背根神經節當中,神經生長因子及神經胜肽的變化。在NGF部分,利用免疫染色可以發現在手術後一天可以看到NGF的表現有增加的趨勢,三天開始下降,到一週相較於正常其表現量有很明顯的下降,而在兩週時則有回升的趨勢;以西方免疫轉漬法分析的結果,則發現NGF蛋白的表現量在一週時下降,而兩週時則上升甚至比正常組來得高,但是到四週又下降。在TrkA的表現方面,可以發現在手術後三天相較於正常組有上升的趨勢,持續增加維持到一週,而到兩週時下降的幅度最為明顯,至四週雖有些回升但是仍然處於低表現量狀態。在p75免疫染色方面,發現其表現量似乎在手術後各個時間點之間並沒有顯著的差異;但以西方免疫轉漬法分析,其結果則發現在正中神經截斷後一週,其表現量即有上升的情形,到兩週時達到高峰,爾後在四週則下降漸趨於正常組。另外我們探討背根神經節中NGF表現的神經元,分析及比較在不同的神經損傷點其細胞大小的分佈情形是否有所改變時,結果發現在手術後一週組相較於正常組,具NGF表現的神經元屬於中大型的比例已有明顯增加的趨勢。另外分析正中神經截斷後substance P及CGRP的表現變化情形方面,結果顯示神經損傷後一週,背根神經節中substance P及CGRP的表現量相較於正常組都有明顯地減少,這趨勢與NGF的表現變化頗為相似。除此之外,我們注射螢光金神經追蹤劑至截斷損傷的正中神經近端處,藉此標誌背根神經節中受損的神經元,並配合免疫染色法檢視NGF、TrkA、p75及相關的神經胜肽的神經元而來進行雙重標誌。經計量分析後,結果顯示在手術後四週組相較於一週組,雙重標誌的神經元占各免疫反應神經元的比例都有明顯下降的情形,由此推測這也許與NGF等各免疫反應細胞來自非受損神經元的數量,隨著神經損傷時程延長而增加所導致的結果。例如我們在電子顯微鏡下發現,背根神經節神經元周圍的satellite cell也有表現NGF及TrkA,這也許可以間接證實這些新合成的NGF代償神經截斷後所減少的數量。 最後我們在正中神經截斷手術前分別使用局部麻醉劑lidocaine及神經活性阻斷劑Tetrodotoxin等藥物處理,爾後分析及比較神經損傷後四週,背根神經節中NGF及TrkA的表現變化。結果顯示,術前藥物處理組相較於未處理組其NGF及TrkA的表現量並沒有顯著的差異,這結果不符合我們的預期。於是我們後續將以神經損傷後一週為觀察的時間點,再評估術前藥物處理對於神經滋養物質及神經胜肽的影響,以期待可以瞭解術前藥物的處理與緩解神經受損造成的神經病變疼痛之間的關係。 | zh_TW |
dc.description.abstract | Nerve growth factor (NGF) is believed to play a critical role in altering the phenotypic and functional properties of dorsal root ganglion cells after peripheral nerve injury. It is well known that expression of NGF and pain-related neuropeptide in the primary afferent neurons change after peripheral nerve injury of lower limb, but remains uncertain following median nerve injury. In this study, immunocytochemical technique and western blot methods were used to investigate the expression and distribution of NGF, TrkA, p75, substance P and CGRP in the C6 dorsal root ganglion (DRG) at various time points following complete median nerve transection.
Quantitative examination showed that the percentage of NGF immunoreactivity (NGF-IR) neurons in the C6 DRG increased at 1 day postoperation (PO) but decreased dramatically at 1 week (24.1%) PO compared with control (32.4%), and it recovered at 2 weeks (26.2%) PO. NGF western blot analysis and immunocytochemistry showed a similar expression pattern, except for the result at 2 weeks. The percentage of TrkA-IR neurons in the DRG increased at 1 week (36.7%) PO compared with control (31.3%) and significantly decreased at 2 weeks (20.2%), then it recovered at 4 weeks (22%). The percentage of p75-IR neurons had no manifest change between various time points, but we found that the p75-IR glia cell surrounding large-diameter neurons was significantly increased with post-injury times. Following p75 western blot analysis showed that the p75 protein level was increased at 1 week PO and peaked at 2 weeks PO. On the other hand, the cell size distribution of NGF-IR neuron was examined. It displayed that the proportions of medium-large neurons increase at 1 week (14.09%) compared with control (8.07%). In addition, we examined the percentage of substance P and CGRP immunoreactive DRG neurons after median nerve transection. The percentage of substance P-IR and CGRP-IR neurons dramatically decreased at 1 week PO and recovered at 2 weeks. These expression patterns are similar to that of NGF. With Fluorogold (FG) injection into the proximal end of transected median nerve, we examined the percentage of NGF-IR, TrkA-IR, substance P-IR and CGRP-IR neurons labeled with FG, respectively, was decreased at 4 weeks compared with that at 1 week. Taken together, the results in this study suggest that the above-mentioned four immunoreactive neurons derived from uninjured neuronal element increase as the extent of nerve injured course. Moreover, under electron microscopy examinations, we detected that several satellite cells surrounding the neurons were expressed NGF and TrkA, it maybe provided evidence to support such implication. Finally, we also examined the expression of NGF and TrkA in the DRG by pre-emptive lidocaine (local analgesic) and tetrodotoxin (TTX, electrical activity blocker) treatments on the median nerve prior to its transection. At 4 weeks PO, there was no significant difference in the expression of NGF and TrkA between pre-empitve and control groups. In the future, we will examine the effect of pre-emptive treatment the on the expression of NGF and TrkA in the DRG at 1 week PO. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:31:22Z (GMT). No. of bitstreams: 1 ntu-96-R94446007-1.pdf: 3107246 bytes, checksum: fe7a5d53704a6245c127a5e97b3eb1b6 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………… Ⅰ
誌謝……………………………………………………………………Ⅱ 中文摘要………………………………………………………………Ⅲ 英文摘要………………………………………………………………Ⅴ 緒論…………………………………………………………………… 1 材料與方法…………………………………………………………… 7 結果………………………………………………………………… 14 討論……………………………………………………………………19 參考文獻………………………………………………………………28 圖及圖片說明…………………………………………………………36 | |
dc.language.iso | zh-TW | |
dc.title | 正中神經截斷後背根神經節中神經生長因子及其相關因子的表現變化 | zh_TW |
dc.title | Changes in expression of NGF and related factors in the dorsal root ganglion after median nerve transection | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 溫振源(Chen-Yuan Wen),尹相姝(Hsiang-Shu Yin),蔡孟宏,吳慶祥 | |
dc.subject.keyword | 神經生長因子,正中神經截斷,周邊神經損傷, | zh_TW |
dc.subject.keyword | NGF,median nerve transection,peripheral nerve injury,TrkA,substance P,CGRP, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。