請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28943
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輔(Fuu Sheu) | |
dc.contributor.author | Wan-Ting Huang | en |
dc.contributor.author | 黃婉婷 | zh_TW |
dc.date.accessioned | 2021-06-13T00:30:49Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-26 | |
dc.identifier.citation | 王伯徹. 2003. 食藥用菇菌類-保健食品產業發展會編 (上). 行政院農委會. 台北.
吳聲華. 2005. 牛樟芝是一個新屬. 國立自然科學博物館簡訊. 2:3 林文輝. 1996. 松杉靈芝免疫調節蛋白的構造與作用機制之研究. 國立臺灣大學醫學院生化學研究所碩士論文 徐鎬基. 1997. 真菌類免疫調節蛋白FIP-vvo 的結構與功能之研究.國立臺灣大學醫學院生化學研究所博士論文. 曹巧吟. 2003. 樟芝中免疫調節蛋白的純化與其生理活性之探討. 國立台灣大學園藝學研究所碩士論文. 陳啟楨. 1999. 菇類二次代謝物質及其利用. 食品工業月刊. 31(5):1-11. 陳清農、許勝傑、陳勁初. 2000. 紅色旋風-勢不可擋. 鄉間小路. 5:48-50. 陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊. 2001. 臺灣特有真菌──樟芝菌斯體之開發. 中國真菌學會會刊. 16: 7-22. 陳盈方. 2005. 樟芝免疫調節蛋白活化巨噬細胞分子機制之探討. 國立台灣大學園藝學研究所碩士論文. 廖英明. 1998. 菇類中的許不了~樟芝. 農業世界雜誌. 176: 76-79. 鄭惠中. 2006. 樟芝免疫調節蛋白 ACA1 異體表現之研究. 國立台灣大學園藝學研究所碩士論文. 錢家樂. 2004. 樟芝免疫調節蛋白基因選殖及表現之研究. 國立台灣大學園藝學研究所碩士論文. Aderem, A. and D. M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Ann. Rev. Immunol. 17: 593-623. Akira. S., S. Uematsu, and O. Takeuchi. 2006. Pathogen Recognition and Innate Immunity. Cell. 124: 783-801. Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421. Biswas, A., P. Banerjee, G. Mukherjee, and T. Biswas. 2007. Porin of Shigella dysenteriae activates mouse peritoneal macrophage through Toll-like receptors 2 and 6 to induce polarized type I response. Mol. Immunol. 44: 812-820. Blander, J. M. and R. Medzhitov. 2004. Regulation of phagosome maturation by signals from toll-like receptors. Science. 304: 1014-1018. Bowie, A. G. and I. R. Haga. 2005. The role of toll-like receptors in the host response to viruses. Mol. Immunol. 42: 859-867. Garner, R.E., K. Rubanowice, R. T. Sawyer, and J. A. Hudson. 1994. Secretion of TNF-alfa by alveolar macrophages in response to Candida albicans mannan. J. Leukocyte Biol. 55: 161-168. Goldsby, R. A., T. J. Kindt, B. A. Osbrone, and J. Kuby. 2002. Immunology. 5th edition. Freeman. N. Y. Haddad, J. J. 2002. Redox regulation of pro-inflammatory cytokines and IκBα/NF-κB nuclear translocation and activation. Biochem. Biophys. Res. Commun. 296: 847-856. Hawn, T. R., A. Ozinsky , D. M. Underhill, F. S. Buckner, S. Akira, and A. Aderem. 2002. Leishmania major activates IL-1α expression in macrophages through a MyD88-dependent pathway. Microbes Infect. 4: 763-771. Hseu, Y. C., F. Y. Wu, J. J. Wu, J. Y. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, and H. L. Yang. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. Int. Immunopharmacol. 5:1914-1925. Hseu, Y. C., W. C. Chang, Y. T. Hseu, C. Y. Lee, Y. J. Yech, P. C. Chen, J. Y. Chen, and H. L. Yang. 2002. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci. 71: 469-482. Hsiao, G., M. Y. Shen, K. H. Lin, M. H. Lan, L. Y. Wu, D. S. Chou, C. H. Lin, C. H. Su, and J. R. Sheu. 2003. Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J. Agric. Food Chem. 51: 3302-3308. Hsu, H. C., C. I. Hsu, R. H. Lin, C. L. Kao, and J. Y. Lin. 1997. FIP-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem. J. 323: 557-565. Hsu, Y. L., Y. C. Kuo, P. L. Kuo, L. T. Ng, Y. H. Kuo, and C. C. Lin. 2005. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett. 221: 77-89. Johnson, J. G. and M. C. Jenkins. 1994. Monocytes provide a novel costimulatory signal to T cells that is not mediated by the CD28–B7 interaction. J. Immunol. 152: 429-437. Kawai, T. and S. Akira. 2007. TLR signaling. Semin. Immunol. 19:24-32. Kino, K., A. Yamashita, K. Yamaoka, J. Watanabe, S. Tanaka, K. Ko, K. Shimizu, and H. Tsunoo. 1989. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J. Biol. Chem. 264: 472-478. Ko, J. L., C. I. Hsu, R. H. Lin, C. L. Kao, and J. Y. Lin. 1995. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur. J. Biochem. 228: 244-249. Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1: 398-401. Lee, I. H., R. L. Huang, C. T. Chen, H. C. Chen, W. C. Hsu, and M. K. Lu. 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol. Lett. 209: 63-67. Lefkowitz, D. L., J. A. Lincoln, S. S. Lefkowitz, A. Bollen, and N. Moguilevsky. 1997. Enhancement of macrophage-mediated bactericidal activity by mavrophage mannose receptor–ligand interaction. Immunol. Cell. Biol. 75: 136-141. Lenschow, D. J., T. L. Walunas, and J. A. Bluestone. 1996. CD28–B7 system of T cell costimulation. Annu. Rev. Immunol. 14: 233-258. Li, B., D. Cramer, S. Wagner, R. Hansen, C. King, S. Kakar, C. Ding, and J. Yan. 2007. Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways. Clin. Immunol. 124: 170-181. Lin, W. H., C. H. Hung, C. I. Hsu, and J. Y. Lin. 1997. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (FIP-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J. Biol. Chem. 272: 20044-20048. Linsley, P. S. and J. A. Ledbetter. 1993. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11: 191-212. Lis, H. and N. Sharon. 1986. Lectins as molecules and as tools. Annu. Rev. Biochem. 55: 35-67. Liu, J. J., T. S. Huang, M. L. Hsu, C. C. Chen, W. S. Lin, F. J. Lu, and W. H. Chang. 2004. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol. Appl. Pharm. 201: 186-193. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25: 677-686. Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555. Mau, J. L., P. N. Huang, S. J. Huang, and C. C. Chen. 2004. Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chem. 86: 25-31. McGreal, E. P., J. L. Miller, and S. Gordon. 2005. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17: 18-24. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145. Medzhitov, R. and C. A. Janeway. 2000. Innate immunity. N. Eng. J. Med. 343: 338-344. Mikami, T., T. Nagase, T. Matsumoto, S. Suzuki, and M. Suzuki. 1982. Gelation of Limulus amoebocyte lysate by simple polysaccharides. Microbiol. Immunol. 26:403-409. Miyake, K. 2007. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol. 19: 3-10. Muzio, M., D. Bosisio, N. Polentarutti, G. D’amico, A. Stoppacciaro, R. Mancinelli, C. Veer, G. Penton-Rol, L. P. Ruco, P. Allavena, and A. Mantovani. 2000. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164: 5998-6004. Nakamura, N., A. Hirakawa, J. J. Gao, H. Kakuda, M. Shiro, Y. Komatsu, C. C. Sheu, and M. Hattori. 2004. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J. Nat. Prod. 67:46-48. Nathan, C. and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. 97: 8841-8848. Ochiai, M., H. Tamura, A. Yamamoto, M. Aizawa, M. Kataoka, H. Toyoizumi, and Y. Horiuchi. 2002. A limulus amoebocyte lysate activating activity (LAL activity) that lacks biological activities of endotoxin found in biological products. Microbiol. Immunol. 46: 527-533. Osugi, Y., J. Hara, S. Tagawa, K. Takai, G. Hosoi, Y. Matsuda, H. Ohta, H. Fujisaki, M. Kobayashi, N. Sakata, K. Kawa-Ha, S. Okada, and A. Tawa. 1997. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood. 89: 4100-4103. Ozinsky, A., D. M. Underhill, J. D. Fontenot, A. M. Hajjar, K. D. Smith, C. B. Wilson, L. Schroeder, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. U.S.A. 97: 13766-13771. Pavlov, V.A. and K. J. Tracey. 2004. Neural regulators of innate immune responsesband inflammation. Cell. Mol. Life Sci. 61: 2322–2331. Peng, C. C., K. C. Chen, R. Y. Peng, C. H. Su, and H. M. Hsieh-Li. 2006. Human urinary bladder cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Lett. 243: 109-119. Qureshi, M. A., C. L. Heggen, and I. Hussain. 2000. Avian macrophage effector functions in health and disease. Devel. Comp. Immunol. 24: 103–119. Roach, T. I., A. F. Kiderlen, and J. M. Blackwell. 1991. Role of inorganic nitrogen oxides and tumor nectosis factor-alfa in killing Leishmania donovani amastigotes in gamma-interferon lipopolysaccharide-activated macrophages form LshS and Lshr congenic mouse strains. Infect. Immun. 59: 3935-3944. Salomon, B. and¬ J. A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19: 225-252. Schindler, R., J. Mancilla, S. Endres, R. Ghorbani, S. C. Clark, and C. A. Dinarello. 1990. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 75: 40-47. Schmitt, J., H. Hess, and H. G. Stunnenberg. 1993. Affinity purification of histidine-tagged proteins. Mol. Biol. Rep. 18: 223-230. Schnare, M., G. M. Barton, A. C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2001. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2: 947-950. Shen, C. C., Y. C. Kuo, R. L. Huang, L. C. Lin, M. J. Don, T. T. Chang, and C. J. Chou. 2003. New ergostane and lanostane from Antrodia camphorate. J. Chin. Med. 14:247-258. Sheu, F., H. H. Lai, and G. C. Yen. 2001. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J. Agric. Food Chem. 49:1767-1772. Shishodia, S, S. Majumdar, S. Banerjee, and B. B. Aggarwal. 2003. Ursolic acid inhibits nuclear factor-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 63: 4375-4383. Song, T. Y. and G. C. Yen. 2003. Protective Effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Agric. Food. Chem. 51: 1571-1577. Song, T. Y., S. L. Hsu, C. T. Yeh, and G. C. Yen. 2005. Mycelia from Antrodia camphorata in submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of Fas pathway. J. Agric. Food Chem. 53: 5559-5564. Strle, K., R. H. MCusker, L. Tran, A. King, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. 2007. Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFα-induced resistance to IGF-I in myoblasts. J. Neuroimmunol. In Press. Takeuchi, O., T. Kawai, P. F. Muhlradt, M. Morr, J. D. Radolf, A. Zychlinsky, K. Takeda, and S. Akira. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13: 933-940. Tilg, H., E. Trehu, M. B. Atkins, C. A. Dinarello, and J. W. Mier. 1994. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 83: 113-118. Tripathi, S., K. G. Maier, D. Bruch, and D. S. Kittur. 2006 Effect of 6-Gingerol on pro-Inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J. Surg. Res. 138: 209-213. Underhill, D. M. And A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20: 825-852. Van Gool, S. W., P. Vandenberghe, M. de Boer, and J. L. Ceuppens. 1996. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol. Rev. 153: 47-83. Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258–274. West, A. P., A. A. Koblansky, and S. Ghosh. 2006. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol. 22: 409-37. Wu, S. H., L. Ryvarden, and T. T. Chang. 1997. Antrodia camphorate (‘‘niu-chang-chih’’), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38: 273-275. Yamamoto, Y., T. W. Klein, and H. Friedman. 1997. Involvement of mannose receptor in cytokine IL-1β, IL-6 and granulocytemacrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1β, MIP-2 and KC responses, caused by attachment of Candida albicans to macrophages. Infect. Immun. 65: 1077-1082. Yang, H. L., C. S. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, C. C. Chen, T. H. Hseu, C. T. Kuo, and Y. C. Hseu. 2006a. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett. 231: 215-227. Yang, H. L., Y. C. Hseu, J. Y. Cheng, Y. J. Yech, F. J. Lu, H. H. Wang, P. S. Lin, and B. C. Wang. 2006b. Antrodia Camphorata in submerged culture protects low density lipoproteins against oxidative modification. Am. J. Chin. Med. 34: 217-231. Yang, S. W., Y. C. Shen, and C. H. Chen. 1996. Steroids and triterpenoids of Antrodia cinnamomea – a fungus parasitic on Cinnamomum micranthum. Phytochemistry. 41:1389-1392. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28943 | - |
dc.description.abstract | 樟芝 (Antrodia cinnamomea) 為台灣真菌特有種,為具有保健療效潛力之藥用真菌。本研究室之前已自樟芝菌絲體發酵液純化出免疫調節蛋白 ACA1 並選殖出其核酸序列,且於大腸桿菌中進行異體表現,以大量生產重組 ACA1 蛋白。本研究即以重組 ACA1 之融合蛋白 (frACA1) 為試驗樣品,希望進一步瞭解樟芝免疫調節蛋白對於活體巨噬細胞的活化作用。利用 15 μg/mL frACA1 處理小鼠腹腔巨噬細胞 (peritoneal macrophage,pMΦ),可增進 pMΦ | zh_TW |
dc.description.abstract | Antrodia cinnamomea is not only an endemic fungus but also a potential medicinal mushroom in Taiwan. Our laboratory had previously isolated an protein, named ACA1 and demonstrated its immunomodulatory ability to activate murine macrophages, from the mycelia of A. cinnamomea. The gene encoding ACA1 had also been cloned and expressed in E.coli for the production of recombinant ACA1 protein. In this study, the macrophage-stimulating activity of recombinant ACA1 fusion protein (frACA1) was thoroughly studied. The results showed that treatment with 15 μg/mL frACA1 increased the phagocytic ability and CD86/B7-2 expression of mouse peritoneal macrophages (pMΦ). In addition, real-time PCR results demonstrated that frACA1 could up-regulate the mRNA expression of cytokines, including IL-1β, TNF-α, IL-6, and iNOS, in a time dependent manner, which suggested that frACA1 could activate pMΦ without hyperinflammation. Moreover, frACA1 promoted the mRNA expression of IL-12p35 and M1 type chemokines genes, including CCL3, CCL4, CCL5 CXCL10, in murine pMΦ. These results revealed that frACA1 was capable to promote Th1 immune response by inducing M1 polarization of pMΦ. Furthermore, we investigated whether frACA1-induced pMΦ activation was mediated with TLR2- or TLR4-signaling pathway or not. The results showed that frACA1 could induce TNF-α secretion by the pMΦ of both TLR2 and TLR4 deficiency mouse. It was also observed that frACA1 showed insignificant effect on increasing the mRNA expression of TLR2, TLR4, MyD88, and NF-κB gene in BALB/c mouse pMΦ (p>0.05), suggesting that TLR2- and TLR4-signaling pathway were not involved in frACA1-stimulating pMΦ activation and the possibility of LPS-contamination in frACA1 was also excluded. However, flowcytometry indicated that there was no interaction between frACA1 and cell surface of pMΦ. Therefore, further investigation could be carried out to discover the activation pathway of frACA1 on murine pMΦ. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:30:49Z (GMT). No. of bitstreams: 1 ntu-96-R94628204-1.pdf: 1599880 bytes, checksum: 1fd66433157cac26609a538bbe7376e0 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄 I
圖表目錄 IV 中文摘要 1 英文摘要 3 第一章 前人研究 5 第一節 前言 5 第二節 食藥用菇菌類的重要性 5 第三節 樟芝與其相關研究之介紹 8 第四節 樟芝免疫調節蛋白之發現與研究 15 第五節 樟芝免疫調節蛋白對巨噬細胞可能的調節作用 19 第六節 研究動機與構想 31 第二章 材料與方法 34 第一節 樟芝免疫調節蛋白之製備 34 第二節 小鼠腹腔巨噬細胞之取得 45 第三節 小鼠腹腔巨噬細胞吞噬活性測試 48 第四節 小鼠腹腔巨噬細胞抗原呈獻能力測試 50 第五節 細胞激素 ELISA 測定法 51 第六節 一氧化氮測定法 53 第七節 腹腔巨噬細胞基因表現量之測定 54 第八節 TLRs 與 frACA1 活化巨噬細胞之相關性 60 第九節 frACA1 與小鼠腹腔巨噬細胞之親和作用 61 第十節 統計分析方法 63 第三章 結果 64 第一節 重組樟芝免疫調節蛋白 frACA1 之製備與活性確認 64 第二節 frACA1 對巨噬細胞吞噬能力的影響 67 第三節 frACA1 對巨噬細胞抗原呈獻能力的影響 68 第四節 frACA1 可增加細胞激素之 mRNA 表現與分泌 70 第五節 frACA1 對巨噬細胞極化之影響 72 第六節 TLRs 路徑與 frACA1 活化巨噬細胞之相關性 75 第七節 frACA1 與巨噬細胞表面之親和作用 77 第四章 討論 79 第一節 frACA1 樣品之選擇 79 第二節 frACA1 對巨噬細胞吞噬及呈獻抗原功能的影響 80 第三節 frACA1 可增進細胞激素之 mRNA 表現與分泌 81 第四節 frACA1 與 IFN-γ 共同作用可明顯增加 NO 分泌量 82 第五節 frACA1 對於巨噬細胞極化之影響 83 第六節 TLRs 路徑與 frACA1 活化巨噬細胞之相關性 85 第七節 frACA1 與小鼠腹腔巨噬細胞表面之親和作用 88 第八節 frACA1 活化作用的可能機制 90 第五章 結論 92 參考文獻 93 圖表 100 附件 122 圖表目錄 表一、frACA1所含內毒素之檢測結果 100 表二、frACA1 對巨噬細胞極化作用的影響 101 圖一、研究架構 102 圖二、frACA1 之製備 103 圖三、frACA1 與 rACA1 對 BALB/c 小鼠腹腔巨噬細胞 TNF- 與 NO 分泌量之影響 104 圖四、frACA1 對 BALB/c 小鼠腹腔巨噬細胞吞噬活性之影響 105 圖五、frACA1 對 BALB/c 小鼠腹腔巨噬細胞表現 CD80 之影響 106 圖六、frACA1 對 BALB/c 小鼠腹腔巨噬細胞表現 CD86 之影響 107 圖七、frACA1 對 BALB/c 小鼠腹腔巨噬細胞表現 MHC class II 之影響 108 圖八、frACA1 對 BALB/c 小鼠腹腔巨噬細胞細胞激素與 iNOS mRNA 表現量之影響 109 圖九、frACA1 對 BALB/c 小鼠腹腔巨噬細胞 TNF-α、IL-1β、NO 分泌量之影響 110 圖十、IFN-γ對 frACA1 活化小鼠腹腔巨噬細胞分泌 TNF-α與 NO 之影響 111 圖十一、frACA1 對 BALB/c 小鼠腹腔巨噬細胞 M1 型趨化素 mRNA 表現量之影響 112 圖十二、frACA1 對 BALB/c 小鼠腹腔巨噬細胞 M2 型趨化素 mRNA 表現量之影響 113 圖十三、frACA1 對小鼠腹腔巨噬細胞 IL-10 與 IL-12p35 mRNA 表現量之影響 114 圖十四、frACA1 對 TLR2-/- 免疫缺陷小鼠腹腔巨噬細胞分泌TNF-α 效應之影響 115 圖十五、frACA1 對 TLR4-/- 免疫缺陷小鼠腹腔巨噬細胞分泌TNF-α 效應之影響 116 圖十六、frACA1 對於 TLR4-/- 免疫缺陷小鼠腹腔巨噬細胞之細胞激素及趨化素 mRNA 表現的影響 117 圖十七、frACA1 對於小鼠腹腔巨噬細胞之 TLR2 與 TLR4 受器 mRNA 表現之影響 118 圖十八、frACA1 對於小鼠腹腔巨噬細胞之 TLRs 路徑下游訊息傳導分子 mRNA 表現之影響 119 圖十九、以 SDS-PAGE 與 Syngene 螢光偵測系統分析 FITC 螢光標定frACA1 120 圖二十、以流式細胞儀分析 frACA1 與小鼠腹腔巨噬細胞表面之交互作用 121 附件一、pET30Aca 載體之圖譜 122 附件二、本研究中所使用的 real-time PCR 引子對 123 | |
dc.language.iso | zh-TW | |
dc.title | 樟芝免疫調節蛋白ACA1對小鼠腹腔巨噬細胞的活化作用 | zh_TW |
dc.title | Mouse Peritoneal Macrophage Activation Induced by ACA1, an Immunomodulatory Protein Isolated from Antrodia cinnamomea | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國傑,柯俊良,繆希椿 | |
dc.subject.keyword | 樟芝,免疫調節蛋白,巨噬細胞,ACA1, | zh_TW |
dc.subject.keyword | Antrodia cinnamomea,Immunomodulatory Protein,macrophage,ACA1, | en |
dc.relation.page | 123 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。