Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28933
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡植慶(Jyr-Ching Hu)
dc.contributor.authorChung Huangen
dc.contributor.author黃鐘zh_TW
dc.date.accessioned2021-06-13T00:30:18Z-
dc.date.available2009-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation中文部分
地質圖
何信昌、陳勉銘(2000)五萬分之一臺灣地質圖及說明書,臺中圖幅。經濟部中央地質調查所。
張憲卿(1994)五萬分之一臺灣地質圖及說明書,大甲圖幅。經濟部中央地質調查所。
李錦發(2000)五萬分之一臺灣地質圖及說明書,東勢圖幅。經濟部中央地質調查所。
羅 偉、吳樂群、陳華玟(1999)五萬分之一臺灣地質圖及說明書,國姓圖幅。五萬分之一臺灣地質圖。經濟部中央地質調查所。
中國石油公司台灣油礦探勘總處(1982)十萬分之一地質圖台中圖幅。
中國石油公司台灣油礦探勘總處(1986)十萬分之一地質圖苗栗圖幅。
期刊、專書及報告
侯進雄、賴典章、費立沅、王菁穗(2000)高精度測量在車籠埔活動斷層監測與調查上之應用研究:九二一地震前後測量結果比較。經濟部中央地質調查所特刊,第12號,191-210頁。
何春蓀,1986。台灣地質概論第二版-台灣地質圖說明書,經濟部中央地質調查所出版,共164頁。
曾佳漢(2006)應用質點影像測速技術分析集集地震於台灣中部所引發之非遽變山崩。國立台灣大學地質研究所碩士論文,共79頁。
李元希、吳維毓、石同生、盧詩丁(2000)九二一集集地震地表變形特性-埤豐橋以東。經濟部中央地質調查所特刊,第12號,19-40頁。
李錫堤(2000)車籠埔斷層HQ連續取樣工程地質調查鑽探工作報告。國立中央大學應用地質研究所印製,共44頁。
林朝棨(1957)台灣地形。台灣省文獻委員會,共424頁。
楊耿明、黃旭燦、吳榮章、丁信修、李長之、梅文威、徐祥宏(2003)斷層活動性觀測與地震潛勢評估調查研究,台灣陸上斷層帶地質構造與地殼變形調查研究(4/5)-台灣中部麓山帶地區。經濟部中央地質調查所,共54頁。
郭昱廷(2006)利用航空照片之次像素關聯探討同震地表位移:以1999集集地震(Mw7.6)草屯地區為例。國立台灣大學地質研究所碩士論文,共73頁。
陳文山、陳于高、劉聰桂、黃能偉(2000)九二一集集大地震的斷層特性與構造意義。經濟部中央地質調查所特刊,第12號,139-154頁。
黃孟涵(2006)以合成孔徑雷達干涉法研究台灣之地殼變形。國立台灣大學地質研究所碩士論文,共185頁。
黃文正、陳致言、劉思妤、林燕慧(2000)台灣中部大甲溪至頭汴坑溪九二一集集地震地表變形模式。經濟部中央地質調查所特刊,第12號,63-87頁。
富國技術工程股份有限公司(2002)台中縣豐原市福陽國小預定校地地質調查報告,共127頁。
顏一勤(2000)台灣中部集集地震震源區之背景應力與構造研究。國立台灣海洋大學應用地球物理研究所碩士論文,共79頁。

英文部分
2DMove V4.1 Manual 2004. Midland Valley Exploration Ltd, 2004, 445 pp.
Angelier, J., Lee, J.C., Hu, J.C., Chu, H.T., 2003a. Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning. Journal of Structural Geology 25, 345-350.
Angelier, J., Lee, J.C., Hu, J.C., Chu, H.T., 2003b. Three-dimensional deformation along the rupture trace of the September 21st, 1999, Taiwan earthquake: A case study in the Kungfu school. Journal of Structural Geology, 25, 351-370.
Chang, J.C., Yang, G.S., 2004. Deformation and occurrence of the Che-lung-pu Fault from geomorphic evidence. Quaternary International, 115–116, 177–188.
Chen, W.S., Chen, Y.G., Shih R.C., Liu, T.K., Huang, N.W., Lin, C.C., Sung, S.H., Lee, K.J., 2003. Thrust-related river terrace development in relation to the 1999 Chi-Chi earthquake rupture, Western Foothills, central Taiwan. Journal of Asian Earth Sciences, 21, 473–480.
Chen, Y.G., Liu, T.K., 1991. Radiocarbon dates of river terraces along the Lower Tahanchi, northern Taiwan: Their tectonic and geomorphic implications. Proceedings of the Geological Society of China, 34, 337–347.
Chen, Y.G., Chen, Y.W., Chen, W.S., Lee, K.J., Lee, L.S., Lu, S.T., Lee, Y.H., 2005. Using OSL method to reconstruct the time frame of sedimentary sequence in a trenching site along 1999 earthquake fault. Abstracts of 11th International Conference on Luminescence and Electron Spin Resonance Dating, 24-29 July 2005, University of Cologne.
Chen, Y.G., Lai, K.Y., Lee, Y.H., Suppe, J., Chen, W.S., Lin, Y.N.N., Wang,Y., Hung, J.H., Kuo, Y.T., 2007, Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake Taiwan, Journal of Geophysics Research, 112, B03S02, doi:10.1029/2006JB004388.
Comninou, M.A., Durders, J., 1975. The angular dislocation in a half-space. Journal of Elasticity, 5 , 203-216.
Dominguez, S., Avouac, J.P., Michel, R., 2003. Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from Spot satellite images: Implications for the seismic cycle along the western foothills of central Taiwan. Journal of Geophysical Research, 108, 2083, doi:10.1029/2001JB000951, 2003.
Dong, J.J., Wang, C.D., Lee, C.T., Liao, J.J., Pan, Y.W., 2003. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: a case study in Fengyuan City. Engineering Geology, 71, 157-179.
Goodman, R. E. Introduction to Rock Mechanics, 1989. John Wiley & Sons, 562 pp.
Heermance R., Shipton, Z. K., Evans, J. P., 2003. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan. Bulletin of the Seismological of America, 93, 1034-1050.
Hung, J.H., and Wiltschko, D. V., 1993. Structure and kinematics of arcuate thrust faults in the Miaoli-Cholan area of western Taiwan, Petroleum Geology of Taiwan, 28, 59-96.
Hung, J., and Suppe, J., 2002. Subsurface geometry of the Sani-Chelungpu faults and fold scarp formation in the 1999 Chi-Chi Taiwan Earthquake, Eos Trans. AGU, 83, 47, Fall Meeting Suppl., Abstract T61B-1268.
Hung, J.H., Wu, Y.H., Yeh, E.C., Wu, J.C., TCDP Scientific Party, 2007. Subsurface Structure, Physical Properties, and Fault Zone Characteristics in the Scientific Drill Holes of Taiwan Chelungpu-Fault Drilling Project.
Terrestrial, Atmospheric and Oceanic Sciences, 18, 271–293,
doi: 10.3319/TAO.2007.18.2.271(TCDP).
Johnson, K.M., Segall, P., 2003. Imaging the ramp-decollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonophysics, 378, 123–139.
Kao, H., Chen, R.Y., Chang, C.H., 2000. Exactly where does the 1999 Chi-Chi earthquake in Taiwan nucleate? Hypocenter relocation using the master station method. Terrestrial, Atmospheric and Oceanic Sciences, 11, 567–580.
Kelson, K.I., Kang, K.H., Page, W.D., Lee, C.T., Cluff, L.S., 2001. Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic characteristic and responses of man-made structures. Bulletin of the Seismological of America, 91 , 930–952.
Lee, C.I., Chang, Y.L., Coward, M.P., 2002, Inversion tectonics of the fold-and-thrust belt, western Taiwan: Geological Society of America Special paper, 358, 13-30.
Lee, J.C., Chen, Y.G., Sieh, K., Chu, H.T., Mueller, K., Chan, Y.C., Rubin, C., Yeats, R., and Chen, W.S., 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu Fault at Wufeng, western Taiwan: structural and Paleoseismic implications for an active thrust fault. Bulletin of the Seismological Society of America, 91, 914-929.
Lee, J.C., Chu, H.T., Angelier, J., Chan, Y.C., Hu, J.C., Lu, C.Y., Rau, R.J., 2002. Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi Taiwan earthquake: Influence from inherited fold belt structures. Journal of Structural Geology, 24, 173–192.
Lee, J.C., Rubin, C., Mueller, K. Chen, Y.G., Chan, Y.C., Sieh, K., Chu, H.T., Chen, W.S, 2004. Quantitative analysis of movement along an earthquake thrust scarp: A case study on a vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan. Journal of Asian Earth Sciences, 23, 263-273, doi:10.1016/S1367-9120(03)00122-6.
Lee, Y.H., Hsieh, M.L., Lu, S.D., Shih, T.S., Wu, W.Y., Sugiyama, Y., Azuma, T., Kariya, Y., 2003. Slip vectors of the surface rupture of the 1999 Chi-Chi earthquake, western Taiwan. Journal of Structural Geology, 25, 1917–1931.
Lee, Y.H., Lu, S.D., Shih, T.S., 2006. Area balancing method as a useful tool to estimate the depth of the Chi-Chi earthquake rupture at the Fengyuan well. Terrestrial, Atmospheric and Oceanic Sciences, 17, 489-502.
Lin, C.W., Lee, Y.L., Huang, M.L., Lai, W.C., Yuan, B.D., Huang, C.Y., 2003. Characteristics of surface ruptures associated with the Chi-Chi earthquake of September 21, 1999. Engineering Geology, 71, 13–30.
Liu, T.K., 1990. Neotectonic crustal movement in Northeastern Taiwan inferred by radiocarbon dating of terrace deposits. Proceedings of the Geological Society of China, 33, 65–84.
Ma, K.F., Mori, J., Lee, S.J., Yu, S.B., 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91, 1069–1087.
Meng, C.Y, 1963. The San-I Overthrust. Petroleum Geology of Taiwan, 2, 1-20.
Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Brusset, S., 2001, Deformation history of southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333, 293-322.
Namson, J., Structure of the Western Foothills belt, 1981. Miaoli-Hsinchu area, Taiwan: (I) Southern part, Petroleum Geology of Taiwan, 18, 31-51.
Namson, J., Structure of the Western Foothills belt, 1983. Miaoli-Hsinchu area, Taiwan: (II) Central part, Petroleum Geology of Taiwan, 19, 51-76.
Namson, J., Structure of the Western Foothills belt, 1984. Miaoli-Hsinchu area, Taiwan: (III) Northern part , Petroleum Geology of Taiwan, 20, 35-52.
Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135-1154.
Ota, Y., Watanabe, M., Suzuki, Y., Sawa, H., 2004. Geomorphological identification of pre-existing active Chelungpu Fault in central Taiwan, especially its relation to the location of the surface rupture by the 1999 Chichi earthquake. Quaternary International, 115–116, 155–166.
Philip, H., Meghraoui, M., 1983. Structure analysis and interpretation of the surface deformation of the El Asnam earthquake of October 10, 1980. Tectonics, 2, 1, 17-49.
Sanderson, D.J., 1982. Models of strain variation in nappes and thrust sheets: A review. Tectonophysics, 88, 201-233.
Savage, H. M., Cooke, M. L., 2003. Can flat-ramp-flat geometry be inferred from fold shape? Journal of Structural Geology, 25, 2023-2034.
Shen, H.C., Huang, S.T., Tang, C.H., Hsu, Y.Y., 1996. Geometrical characteristics of structural inversion on the offshore of Miaoli, Taiwan. Petroleum Geology of Taiwan, 30, 79-110.
Shyu, J.B.H., Sieh, K., Chen, Y.G., Liu, C.S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research, 110, B08402, doi:10.1029/2004JB003251.
Suppe, J., 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684-721.
Suppe, John, 1984. Seismic interpretation of the compressively reactivated normal fault near Hsinchu, western Taiwan. Petroleum Geology of Taiwan, 20, 85-96.
Suppe, John, 1986. Reactivated normal faults in the western Taiwan fold-and-thrust belt. Memoir of The Geological Society of China, 7, 187-200.
Steketee, J.A., 1958. On Volterra’s dislocation in a semi-infinite elastic medium. Canadian Journal of Physics, 36, 192-205.
Tanaka, H., Wang, C.Y., Chen, W.M., Sakaguchi, A., Ujiie, K., Ito, H., Ando, M., 2002. Initial Science Report of Shallow Drilling Penetrating into the Chelungpu Fault Zone, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 13, 227-251.
Tsai, H., Sung, Q.C., 2003. Geomorphic evidence for an active pop-up zone ssociated with the Chelungpu fault in central Taiwan. Geomorphology, 56, 31-47.
Tsai, Y.B., Liaw, Z.S., Lee, T.Q., Lin M.T., 1980. Seismological evidence of an active plate boundary in the Taiwan area. Memoir of The Geological Society of China, 4, 143-154.
Waldhauser, F., Ellsworth, W.L., 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 6, 1353-1368, doi:10.1785/0120000006.
Wang, C.Y., Li, C.L., Su, F.C., Leu, M.T., Wu, M.S., Lai, S.H., Chern, C.C., 2002. Structural Mapping of the 1999 Chi-Chi Earthquake Fault, Taiwan by Seismic Reflection Methods. Terrestrial, Atmospheric and Oceanic Sciences, 13, 211-226.
Wu, F.T., Rau, R.J., 1998. Seismotectonics and identification of potential seismic source zones in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 9, 4, 739-754.
Yang, K.M., Wu, J.C., Ting, H.H., Wang, J.B. Chi, W.R., Kuo, C.L., 1994. Sequential deformation in foothills belt, Hsinchu and Miaoli areas: Implications in hydrocarbon accumulation. Petroleum Geology of Taiwan, 29, 47-74.
Yang, K.M., Ting, H.H., Wu, J.C., Chi, W.R., 1997. Geological model for complex structures and its implications for hydrocarbon exploration in Northwestern Taiwan: Petroleum Geology of Taiwan, 27, 1-42.
Yang, K.M., Huang, S.T., Wu, J.C., Ting, H.H., Mei, W.W., Lee, Min., Hsu, H.H., Lee. C,J., 2007. 3D geometry of Chelungpu thrust system in Central Taiwan: Its implications for active tectonics. Terrestrial, Atmospheric and Oceanic Sciences, 18, 143-181, doi: 10.3319/TAO.2007.18.2.143(TCDP).
Yu, S.B., Chen, H.Y., Kuo, L.C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41–59.
Yu, S.B., Kuo, L.C., Hsu, Y.J., Su, H.H., Liu, C.C., 2001. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan earthquake. Bulletin of Seismological Society of America, 91 , 995–1012.
Yue, L.F., Suppe, J., Hong, J.H., 2005. Structural geology of a classic thrust belt earthquake: The 1999 Chi-Chi earthquake Taiwan (Mw=7.6). Journal of Structural Geology, 27, 2058–2083.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28933-
dc.description.abstract台灣中部地區於1999年受到集集地震之重創,造成兩千餘位民眾喪生,上千億的財物損失。造成此地震之車籠埔斷層上盤北段於同震時有著近十公尺的位移量,此等變形規模不僅為台灣百年唯一,在世界上亦不多見。由於車籠埔斷層北段有著異常巨大的變形量,因此本研究即針對該地區進行斷層面構造幾何之探討,並建立了一區域尺度之大型三維地質構造模型,以及一公里尺度的小型三維地震斷層面幾何模型,試圖找出此等規模之變形與其斷層構造之關聯,以及在此等級的上盤位移下,伴隨主斷層活動的次生構造幾何形貌與運動方式,最後使用數值方法模擬近地表斷層面上的滑移分布。
西部麓山帶於苗栗的褶皺區塊至台中的覆瓦排列斷層區塊間,於地表上有明顯的分界,大致平行於后里台地以及大安、大甲兩溪,而車籠埔斷層上盤之最大抬升地區的即座落於本轉換帶之南緣,為找出本構造區塊轉換帶與車籠埔斷層上盤抬升之關聯,本研究建立一個橫跨苗栗以及台中地區的三維地質構造模型。此模型使用八條構造平衡剖面建構,而其中一條為本研究自行製作之構造平衡剖面。該剖面之建構是依據中油公司之震測剖面及地表地層位態,配合重定位之震源控制剖面深處而製作完成。
此三維地質構造模型顯示,苗栗與台中構造區塊交界帶似乎受控於一大型向南傾斜之斷坡,橫跨苗栗與台中兩區的構造均受到此斷坡之影響,其中包括出磺坑-關刀山背斜之隱沒、三義斷層上盤大安背斜之生成、以及車籠埔斷層之走向轉折等現象均受到該斷坡之影響。由於車籠埔斷層下盤之大安背斜阻擋車籠埔斷層向北的運動,因此於該背斜處會有較大的同震抬升產生,而此區即為本次集集地震垂直抬升之最大地區。
於集集地震同震最大抬升區之內,本研究使用豐原市的都市計畫樁作為工具,分析該市東側之同震變形。結果顯示該區域內之上盤變形並非單一塊體運動,而是數個塊體以1 m內的位移差共同造成上盤的位移。各塊體依其岩性不同而呈現類似剛體或有10 ~ 20 cm的內部變形之運動模式。本研究結果顯示豐原市東側集集地震地表破裂上盤區域仍有許多次生活動構造,於集集地震時產生大小不一之位移。
本研究使用計算自都計樁之空間位移向量,建構一個公里級尺度的地震斷層構造幾何模型。該模型之形貌顯示公里級尺度之下的斷層傾角可以有相當大的變化,在短短數百公尺之內造成區域性的斷坡與斷坪。而利用鑽井資料測試本研究建構之斷層面幾何模型,可得到僅15 m的深度差異,本研究認為該模型確實可代表集集地震的同震地震斷層形貌。
最後,本研究使用此公里級之地震斷層幾何模型進行數值模擬,以了解斷層上盤於此尺度之下的地表形變模式、材料特性以及斷層面上同震滑移量分布。模擬結果顯示,斷層上盤的地表形變完全受控於其下之斷層形貌,而公里級尺度之下的斷層面上滑移量分布則顯示出量值大小亦受控於斷層面之幾何形貌。以本研斷層面滑移分布為例,滑移最大之位置即位在兩斷坡之交界處,且位在利用地表位移觀察到的一剛性運動塊體之邊界上,此現象顯示斷層面上的滑移量分布與地表觀測到的位移模式有絕對之關聯。
本論文使用數種不同之工具建構台中盆地北側於不同尺度之下的構造形貌,希望經由三維構造模型之呈現,釐清台中盆地北側之構造形貌,以及車籠埔斷層上盤活動模式與本區域之其他構造的關聯。而本論文利用數值方法討論公里級尺度之集集地震同震變形之研究,解析出了以往區域尺度相關研究無法解析之近地表淺層斷層上盤運動模式以及斷層面上滑移量的分布。希望未來有更多地球物理、鑽井以及測量資料檢測本研究建構之模型,並期望在不久的將來有更多研究結果補強本模型之不足,可以更清楚的解析出台中盆地北側的地下地質,特別是可能的發震斷層構造形貌,以期減少本區可能之災害性地震發生時所帶來之傷害。
zh_TW
dc.description.abstractThe northern Taichung basin is a transition zone between two structural domains in central Taiwan: folds-dominated domain in the north and imbricate thrusts- dominated domain in the south. Both of the north and south domains are highly active area. Series of large earthquakes occurred in 1935 in the north domain, and the devastating Mw 7.6 Chi-Chi earthquake occurred in 1999 in the south domain. The main purposes of this study are: to construct the structure geometry in the highly active structural transition area; to reveal detailed deformation pattern in the hanging wall of Chi-Chi earthquake and to construct a kilometer scale geometry model of the earthquake fault; and to simulate the slip distribution on the proposed fault plane.
A 3D geological model was established based on seven published balanced cross sections plus one cross section constructed in the first part of the thesis. The constructed cross section is based on the surface geological data and relocated earthquake hypocenters. This 3D geological model indicated the high co-seismic displacements in northern section of Chi-Chi earthquake fault is result from a fault- bend fold in its footwall. The fold is caused by a lateral ramp underneath the Daan and Dacha Rivers. The anticlinal fold is also responsible for the changing direction of the rupture trace in the northern Chi-Chi earthquake fault.
The second part is to characterize the deformational behaviors of the hanging wall block due to earthquake fault slip in northern Chi-Chi earthquake fault. In the case of the 1999 Chi-Chi earthquake, hanging wall block of the earthquake fault showed complex deformation pattern at the kilometer scale. Because previous studies mainly characterize the fault at the regional scale, it is of interest and also a challenge to characterize the fault at a smaller scale with a higher resolution. In this study, the geometry of a kilometer-scale patch of the fault plane is reconstructed using the displacement data collected from the densely distributed city planning benchmarks. The study area is approximately 4 km by 8 km in size, and contains as many as 924 benchmarks. Among the benchmarks, 62 have both horizontal and vertical displacement data, and the rest of the benchmarks have the horizontal displacement data. Based on the assumption of constant volume, the earthquake fault geometry is built by using the 62 slip vectors. The derived fault geometry model is rather consistent with the borehole data from the nearby 450 m well.
The last part of the thesis applies numerical model to evaluate the fault geometry and to simulate the slip distribution on the fault plane. The fault geometry can be evaluated using the concept of fault parallel flow. The method of fault parallel flow can restore the topography before the earthquake and the deformation controlled by the fault geometry. Comparing pre-earthquake and post-earthquake cross sections of topography shows very high correlation coefficient, above 0.99 in average. Half-space elastic dislocation model is then used to simulate the slip distribution on the fault plane, which is inversed from the displacement data of city planning benchmarks. The result shows significant slip variation at the kilometer scale and is interpreted to be related to the deformation zone.
The thesis uses different methods to reveal the spatial distribution and 3D geometry of seismogenic structures in northern Taichung basin at different scale. The results indicate better resolution of the seismogenic can apply to the earthquake hazards mitigation in this area in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:30:18Z (GMT). No. of bitstreams: 1
ntu-96-R94224104-1.pdf: 12266270 bytes, checksum: f28012a0a34592fe3a6e7f312dd59e04 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
口試委員會審定書...........................................I
致 謝....................................................II
摘 要...................................................III
Abstract...................................................V
目 錄...................................................VII
圖目錄.....................................................X
表目錄...................................................XII
第一章 序論................................................1
1.1 前言...................................................1
1.2台中盆地北側三維地質構造模型研究概述....................1
1.3上盤同震位移與公里級尺度地震斷層形貌建構概述............2
1.4上盤同震變位與斷層面位移分布數值模擬概述................3
第二章 台中盆地北側三維地質構造模型........................4
2.1 前言...................................................4
2.2 苗栗與台中地區之構造概述...............................6
2.2.1 苗栗地區構造概述.....................................6
2.2.2 台中地區構造概述.....................................7
2.3構造平衡剖面之建構與回復................................8
2.3.1構造平衡剖面之建構工具及方法簡述......................8
2.3.2構造平衡剖面之回復....................................9
2.3.3建構大甲-后里-白冷之地質構造平衡剖面...............11
2.3.4 不同基底滑移面形貌對構造平衡剖面建構之比較..........14
2.4 苗栗與台中構造區塊交界帶之三維地下構造模型............15
2.4.1研究區域內已發表之構造平衡剖面.......................15
2.4.2研究區域內之立體構造模型.............................19
2.5 小結..................................................31
第三章 地震斷層上盤同震位移及地震斷層面建構-以豐原市東側集
    集地震斷層為例.....................................32
3.1 前言..................................................32
3.2前人研究...............................................33
3.2.1研究區域地形與地質概述...............................33
地形概述.................................................33
地質概述.................................................38
3.2.2集集地震大尺度同震地表變形相關研究...................40
3.2.3集集地震斷層北段之野外測量地表變形相關研究...........41
3.3研究使用之都市計劃樁介紹...............................43
3.4豐原市東側集集地震同震變形模式.........................46
3.4.1橫跨上下盤之水平變形模式.............................46
3.4.2水平位移場以及上盤內部之水平方向相對變形.............51
3.4.3垂直位移場...........................................56
3.5豐原市東側集集地震斷層幾何模型之建構與測試.............58
3.6討論:集集地震斷層之上盤運動模式.......................64
3.7小結...................................................66
第四章 同震地形變位與斷層面位移分布數值模擬...............67
4.1前言...................................................67
4.1.1 FPF回復法簡介.......................................67
4.1.2彈性半空間斷層錯位模型簡介...........................71
4.2地震斷層幾何模型之數值模擬結果.........................75
4.2.1以FPF法模擬上盤之同震地表形變........................75
4.2.2以斷層錯位法評估研究區域之地質材料特性...............80
4.2.3以斷層錯位法模擬分布於斷層面之同震滑移量.............86
4.3討論:影響上盤運動模擬之因素...........................87
4.3.1影響FPF法模擬地表形變結果之因素......................88
4.3.2地質材料特性與彈性半空間斷層錯位模擬結果之關聯.......88
4.4小結...................................................90
第五章 結論...............................................91
參考文獻..................................................93
中文部分..................................................93
地質圖....................................................93
期刊、專書及報告..........................................93
英文部分..................................................95
附錄A 都市計畫樁測量誤差.................................102
附錄B 研究區域北段於三種不同包松比環境下模擬都計樁位移值一覽
   表.................................................104

圖 目 錄
圖2-1研究區域地質圖........................................5
圖2-2苗栗台中地區地下斷層模型立體圖........................6
圖2-3曲滑褶皺恢復平衡法地層回復示意圖......................9
圖2-4楊耿明等人所製作之Line 20剖面........................10
圖2-5楊耿明等人所製作之Line 20剖面回復後之形貌............10
圖2-6基底滑移面於10 km以下之構造平衡剖面及剖面回復圖......12
圖2-7基底滑移面於10 km以上之構造平衡剖面及剖面回復圖......13
圖2-8 Namson所製作之Line 1剖面............................15
圖2-9楊耿明等人所製作之22號剖面...........................16
圖2-10楊耿明等人所製作之21號剖面..........................17
圖2-11楊耿明等人所製作之20號剖面..........................18
圖2-12洪日豪與Suppe所製作之剖面...........................18
圖2-13楊耿明等人所製作之18號剖面..........................19
圖2-14研究區域立體構造模型俯視圖..........................21
圖2-15研究區域立體構造與地層模型俯視圖。..................22
圖2-16模型內之震源分布....................................23
圖2-17南北走向之模型剖面與解釋............................24
圖2-18三義斷層下盤木山層層頂模型圖........................25
圖2-19三義斷層下盤東坑層層頂模型圖........................25
圖2-20三義斷層下盤桂竹林層層頂模型圖......................26
圖2-21三義斷層下盤錦水頁岩層頂模型圖......................26
圖2-22三義斷層下盤卓蘭層層頂模型圖........................27
圖2-23三義斷層以及其上盤木山層層頂模型圖..................28
圖2-24三義斷層上盤東坑層層頂模型圖........................28
圖2-25三義斷層上盤桂竹林層層頂模型圖......................29
圖2-26車籠埔斷層模型圖....................................29
圖2-27三義斷層上盤錦水頁岩層頂模型圖......................30
圖2-28三義斷層上盤卓蘭層層頂模型圖........................30
圖3-1台灣中部地區地形與地質簡圖...........................34
圖3-2研究區域地形分區簡圖.................................35
圖3-3豐原市水源路斷層崖照片...............................36
圖3-4豐原市中正公園內的單斜崖.............................36
圖3-5南陽路階地旁於集集地震同震時產生的斷層崖.............37
圖3-6研究區域地質簡圖.....................................39
圖3-7集集地震六年後拍攝野外露頭之相片.....................39
圖3-8豐原市千分之一都計圖.................................45
圖3-9a集集地震前後都計圖疊合比較圖........................46
圖3-9b豐原市東側都計圖重測區域圖..........................46
圖3-10水源路測線西向與北向水平位移分量圖..................48
圖3-11南陽路測線西向與北向水平位移分量圖..................49
圖3-12南陽路階地構造分布圖................................51
圖3-13研究區域上盤水平位移向量圖與角度、淨向量長度直方圖..53
圖3-14研究區域都計樁位移場圖..............................54
圖3-15上盤相對位移向量圖..................................57
圖3-16地震斷層幾何面製作流程..............................59
圖3-17立體地震斷層幾何模型................................60
圖3-18集集地震地震斷層模型等深圖..........................62
圖3-19地震斷層鑽井測試示意圖..............................63
圖4-1 FPF法回復地層示意圖.................................69
圖4-2角狀錯動原理示意圖...................................73
圖4-3順推位移觀測點與斷層面幾何關係示意圖.................75
圖4-4研究區域北段剖面位置圖...............................76
圖4-5未回復之地形以及斷層剖面圖...........................77
圖4-6回復震後地形剖面與震前地形剖面比較圖.................77
圖4-7研究區域北段斷層面逆推用向量分布圖...................82
圖4-8包松比與六個滑移方向的最大位移量之關聯圖.............82
圖4-9模形於不同包松比環境下模擬出之向量與實測值誤差數量分布
直方圖...............................................85
圖4-10順推模擬結果與觀測值比較圖..........................86
圖4-11位移向量逆推位移量至斷層面上之滑移分布圖............87
表 目 錄
表4-1 研究區域內上盤滑移點淨滑移長數量表..................78
表4-2 研究區域北段上盤地形剖面回復長度、單剪角度與相關係數關
係表................................................79
表4-3 Poly3D測試結果......................................81
表4-4模形於不同包松比環境下模擬出之向量與實測值誤差數量分布
圖..................................................84
dc.language.isozh-TW
dc.title台中盆地北側斷層構造與同震地表變形研究zh_TW
dc.titleThe Fault Geometry and Co-seismic Surface Deformation
Around the Northern Taichung Basin
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor詹瑜璋(Yu-Chang Chan)
dc.contributor.oralexamcommittee陳于高(Yue-Gau Chen),李建成(Jian-Cheng Lee),楊耿明(Kenn-ming Yang)
dc.subject.keyword台中盆地,車籠埔斷層,集集地震,都市計畫樁,斷層面幾何模型,構造平衡剖面,數值模擬,zh_TW
dc.subject.keywordTaichung basin,Chelungpu fault,Chi-Chi earthquake,city planning benchmarks,fault geometry model,balanced cross section,numerical modeling,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
11.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved