Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorChun-Yi Wuen
dc.contributor.author吳俊逸zh_TW
dc.date.accessioned2021-06-13T00:29:06Z-
dc.date.available2009-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] S. Thrun, W. Burgard, and D. Fox, 'A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots,' Autonomous Robots, vol. 5, pp. 253-271, 1998.
[2] M. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, 'A solution to the simultaneous localization and map building (SLAM) problem,' Robotics and Automation, IEEE Transactions on, vol. 17, pp. 229-241, 2001.
[3] C. C. Wang and C. Thorpe, 'Simultaneous localization and mapping with detection and trackingof moving objects,' Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, vol. 3, 2002.
[4] A. J. Davison, 'Real-time simultaneous localisation and mapping with a single camera,' Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp. 1403-1410, 2003.
[5] J. M. M. Montiel, J. Civera, and A. J. Davison, 'Unified Inverse Depth Parametrization for Monocular SLAM,' analysis, vol. 9, p. 1.
[6] W. Y. Jeong and K. M. Lee, 'CV-SLAM: a new ceiling vision-based SLAM technique,' Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 3195-3200, 2005.
[7] E. Eade and T. Drummond, 'Scalable Monocular SLAM,' Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1, 2006.
[8] M. A. Paskin, 'Thin Junction Tree Filters for Simultaneous Localization and Mapping,' Computer, 2002.
[9] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-Whyte, 'Simultaneous Localization and Mapping with Sparse Extended Information Filters,' The International Journal of Robotics Research, vol. 23, p. 693, 2004.
[10] R. Sim, P. Elinas, M. Griffin, and J. J. Little, 'Vision-based SLAM using the Rao-Blackwellised particle filter,' IJCAI Workshop on Reasoning with Uncertainty in Robotics (RUR), 2005.
[11] T. Lemaire, S. Lacroix, and J. Sola, 'A practical 3D bearing-only SLAM algorithm,' Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 2449-2454, 2005.
[12] P. Jensfelt, D. Kragic, J. Folkesson, and M. Bjorkman, 'A Framework for Vision Based Bearing Only 3D SLAM,' Proc. of the IEEE International Conference on Robotics and Automation (ICRA?6).
[13] G. Welch and G. Bishop, 'An Introduction to the Kalman Filter,' ACM SIGGRAPH 2001 Course Notes, 2001.
[14] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and S. A. Adelaide, 'A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking,' Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 50, pp. 174-188, 2002.
[15] N. J. Belkin and W. B. Croft, 'Information filtering and information retrieval: two sides of the same coin?,' Communications of the ACM, vol. 35, pp. 29-38, 1992.
[16] A. Elfes, 'Using occupancy grids for mobile robot perception and navigation,' Computer, vol. 22, pp. 46-57, 1989.
[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics: MIT Press, 2005.
[18] T. P. Speed and H. T. Kiiveri, 'Gaussian Markov Distributions over Finite Graphs,' The Annals of Statistics, vol. 14, pp. 138-150, 1986.
[19] S. L. Lauritzen, Graphical Models: Clarendon Pr, 1996.
[20] J. P. Lewis, 'Fast normalized cross-correlation,' Vision Interface, p. 120?23, 1995.
[21] D. G. Lowe, 'Object recognition from local scale-invariant features,' Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, 1999.
[22] K. Mikolajczyk and C. Schmid, 'Scale & Affine Invariant Interest Point Detectors,' International Journal of Computer Vision, vol. 60, pp. 63-86, 2004.
[23] S. Se, D. Lowe, and J. Little, 'Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks,' The International Journal of Robotics Research, vol. 21, p. 735, 2002.
[24] C. Harris and M. Stephens, 'A combined corner and edge detector,' Alvey Vision Conference, vol. 15, 1988.
[25] T. Lindeberg, 'Feature Detection with Automatic Scale Selection,' International Journal of Computer Vision, vol. 30, pp. 79-116, 1998.
[26] T. Kadir, A. Zisserman, and M. Brady, 'An affine invariant salient region detector,' European Conference on Computer Vision, vol. 1, p. 228?41, 2004.
[27] F. Jurie, C. Schmid, I. C. Gravir, and F. Montbonnot, 'Scale-invariant shape features for recognition of object categories,' Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2.
[28] K. Mikolajczyk and C. Schmid, 'A performance evaluation of local descriptors,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1615-1630, 2005.
[29] L. M. J. Florack, B. M. Ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, 'General intensity transformations and differential invariants,' Journal of Mathematical Imaging and Vision, vol. 4, pp. 171-187, 1994.
[30] W. T. Freeman and E. H. Adelson, 'The design and use of steerable filters,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 13, pp. 891-906, 1991.
[31] Y. Ke and R. Sukthankar, 'PCA-SIFT: A more distinctive representation for local image descriptors,' Proc. CVPR, vol. 2, p. 506?13, 2004.
[32] H. Bay, T. Tuytelaars, and L. Van Gool, 'SURF: Speeded Up Robust Features,' Proc 9th European Conf on Computer Vision, Graz, May 7, vol. 13, p. 404?17, 2006.
[33] P. Viola and M. Jones, 'Rapid object detection using a boosted cascade of simple features,' Proc. CVPR, vol. 1, pp. 511-518, 2001.
[34] A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, 'Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal Through Wavelet Shrinkage,' IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 7, p. 319, 1998.
[35] J. Beis and D. G. Lowe, 'Shape indexing using approximate nearest-neighbour search in high-dimensional spaces,' Conference on Computer Vision and Pattern Recognition, Puerto Rico, pp. 1000-1006, 1997.
[36] T. D. Barfoot, 'Online visual motion estimation using FastSLAM with SIFT features,' Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 579-585, 2005.
[37] M. Walter, 'SLAM Summer School 2006.'
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28910-
dc.description.abstract在大尺度環境下機器人同步建構地圖與自我定位(Simultaneously Localization and Mapping, SLAM)的應用中,常會遇到一個問題,即過多的地圖地標無可避免地會讓共同估測機器人位置與地圖地標的濾波器計算負擔太大。這主要是由於兩個原因所造成:一方面是在地圖地標的選擇機制上不夠扎實,導致在環境觀測過程中不必要的定位地標太多;而另ㄧ方面,則是濾波器的本身數學特性,導致計算負擔的增加。在本論文中,我們提出了一個結合加速強健特徵擷取(SURF Extraction)以及逆深度特徵初始化(Inverse Depth Initialization)的影像前端系統,來有效的選出強健的靜止地圖地標,用以提供定位及地圖資訊,並且在已知地圖再次觀測到的前提之下,有效達到大範圍的不確定縮減。此外,在後端濾波器的選擇上,我們將稀疏線性化資訊濾波器演算法延伸到影像感測器的應用。稀疏線性化資訊濾波器已被證實,在使用雷射實現SLAM時,可以有效的維持計算效能。最後,透過實驗以及模擬,我們證實了此系統的效能及可靠性。zh_TW
dc.description.abstractIn the application of root Simultaneous Localization and Mapping (SLAM) in a large scale environment, it remains a challenge to resolve the obstacle of the inevitable computational burden on the filtering scheme imposed by the excessive number of landmarks.
This obstacle maily attributes to two facts: one is that the selection scheme is not sufficiently stringent, thus resulting in the inclusion of valueless localization landmarks during the environment observation process; the other is the mathematical characteristic of the filter, i.e. the computational complexity is proportional to the number of landmarks. In this thesis, we propose a visual front-end system integrating the speed-up robust feature extraction (SURF Extraction) and Inverse Depth Initialization to efficiently and effectively select robust static landmark for the information of localization and mapping and significantly reduce the uncertainty of the large exploration environment under the presumption of re-observation of the map. Furthermore, we extend the sparse linearization information filtering algorithm to the application of visual sensor. In the SLAM of laser, it has been proved the adoption of sparse linearization information filter effectively improve the computational efficiency. The performance and reliability is validated by the simulation and experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:29:06Z (GMT). No. of bitstreams: 1
ntu-96-R94921014-1.pdf: 3402052 bytes, checksum: 9085b787b4d3ad456a6b31febb5171cf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Contribution 3
1.4 Thesis Organization 4
Chapter 2 Preliminaries 5
2.1 Fundamental of SLAM 5
2.1.1 Bayesian Method 5
2.1.2 Feature-based approach in SLAM 7
2.1.3 Extended Kalman Filter (EKF) in SLAM 9
2.1.4 Extended Information Filter (EIF) in SLAM 17
2.2 SLAM Using Vision 19
2.2.1 Top-down Approaches 20
2.2.2 Bottom-up Approaches 23
2.3 Feature Extraction in Computer Vision 23
2.3.1 Feature Detection 24
2.3.2 Feature Description 26
2.4 Landmark Initialization 28
2.4.1 Delayed Approaches 29
2.4.2 Non-delayed approaches 30
Chapter 3 Visual Front-end System 35
3.1 System Diagram of Visual Front-end System 38
3.2 Speeded Up Robust Feature (SURF) 45
3.2.1 Fast Hessian Detector 45
3.2.2 SURF Descriptor 46
3.3 Algorithm for deleting features on moving objects 48
3.4 Database Management for Place Recognition 49
Chapter 4 System Modeling and Filter Design 51
4.1 System Diagram 51
4.2 Motion Model 52
4.2.1 2D Robot Motion Model 52
4.2.2 2.5D Camera Model on Robot Platform 55
4.3 Measurement Model 56
4.4 Sparse Extended Information Filter in SLAM 57
Chapter 5 Simulation and Experiment Results 65
Introduction of Experimental Equipment and Environment 65
5.1 65
5.1.1 Hardware of the Experimental System (Tour Guide Robot) 65
5.1.2 Hardware of the Experimental System (Pioneer) 66
5.1.3 Experimental Environment 67
Performance Evaluation in Visual Front-end System 68
5.2 68
5.2.1 The performance of the inverse depth landmark initialization 68
5.2.2 The performance of the visual front end system 70
Total Results of the Integrated System 72
5.3 72
Chapter 6 Conclusion and Future Work 76
6.1 Conclusion 76
6.2 Future work 76
dc.language.isoen
dc.subject稀疏線性化資訊濾波器zh_TW
dc.subject機器人同步建構地圖與自我定位zh_TW
dc.subject影像特徵擷取與初始化zh_TW
dc.subject影像前端系統zh_TW
dc.subjectrobot SLAMen
dc.subjectsparse linearization information filteren
dc.subjectvisual front-end systemen
dc.subjectfeature extraction and initializationen
dc.title利用整合式單眼視覺之機器人同步自我定位及建立地圖系統實現大範圍之室內環境探索zh_TW
dc.titleAn Integrated Robotic vSLAM System to Realize Exploration in Large Indoor Environmenten
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立昇(Li-Sheng Wang),王傑智(Chieh-Chih Wang),宋開泰(Kai-Tai Song),林進燈(Chin-Teng Lin)
dc.subject.keyword機器人同步建構地圖與自我定位,影像特徵擷取與初始化,影像前端系統,稀疏線性化資訊濾波器,zh_TW
dc.subject.keywordrobot SLAM,feature extraction and initialization,visual front-end system,sparse linearization information filter,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved