Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳誠亮(Cheng-Liang Chen)
dc.contributor.authorHui-Liang Liaoen
dc.contributor.author廖輝亮zh_TW
dc.date.accessioned2021-06-13T00:28:48Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] Brooke, A., Kendrick. D., Meeraus, A., Raman, R., and Rosenthal, R. E. GMAS : A User’s Guide, GAMSDevelopment Corporation, 1988.
[2] Chang, C.T. and Li, B.H. “Inproved optimization strategies for generating practical water-usage and -treatment network structures,” Ind. Eng. Chem. Res., vol. 44, pp. 3607, 2005.
[3] Douglas, J.M. “Process synthesis ofr waste minimization,” Ind. Eng. Chem. Res.,
vol. 31, pp. 238, 1992.
[4] Doyle, S., and Smith, R. “Targeting water reuse with multiple contaminants,” Trans. Inst. Chem. Eng, vol. 75, pp. 181, 1997.
[5] Du J., Du H.B. , Yu H.M., Fan X.H. and Yao P.J. “Optimal design of water utilization network with energy integration in process industries,” Chinese J. Chemical Engineering, vol. 12, pp.247, 2004.
[6] Du J., Yu H.M., Fan X.H. and Yao P.J. “Integration of mass and energy in water
network design,” process systems engineering, 2003.
[7] El-Halwagi, M. M. and Manousiouthakis, V. “Synthesis of mass-exchange networks,” AIChE, vol. 8, pp. 1233, 1989.
[8] El-Halwagi, M. M. and Manousiouthakis, V. “Automatic synthesis of massexchange networks with single component targets,” Chem. Eng. Sci., vol. 9, pp. 2813, 1990a.
[9] El-Halwagi, M. M. and Manousiouthakis, V. “Simultaneous synthesis of massexchange and regeneration networks,” AIChE, vol. 36, pp. 1209, 1990b.
[10] El-Halwagi, M. M., El-Halwagi, A. M., and Manousiouthakis, V. “Optimal design of dephoenolization networks for petroleum-refinery wastes,” Trans. Ins. Chem.Eng. Part B, vol. 70, pp. 131, 1992.
[11] Feng, X. and Seider, W.D. “New structure and design methodology for water networks,” Ind. Eng. Chem. Res., vol. 40, pp. 6140, 2001.
[12] Floudas, C.A., and Grossmann, I.E. “Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures,” Comp. Chem. Eng., vol. 11, pp. 319, 1986.
[13] Floudas, C.A., Ciric, A.R., and Grossmann, I.E. “Automatic synthesis of optimum heat exchanger network configurations,” AIChE J, vol. 32, pp. 276, 1986.
[14] Furman, K.C., and Sahinidis, N.V. “A critical review and annotated bibliography for heat
exchanger network synthesis in the 20th century,” Ind. Eng. Chem. Res, vol. 41, pp. 2335, 2002.
[15] Galan, B. andGrossmann, L.E. “Optimal design of disturbutedwastewater treatment networks,” Ind. Eng. Chem. Res., vol. 37, pp. 4038, 1998.
[16] Gunarantam, M., Alva-Argaez, A., Kokossis, A., Kim, J-K, and Smith, R. “Automated design of total water systems,” Ind. Eng. Chem. Res., vol. 44, pp. 588, 2005.
[17] Hallale, N. and Fraser, D. M. “Capical cost targets for mass exchange networks: a special case: water minimization,” Chem. Eng. Sci., vol. 53, pp. 293, 1998.
[18] Huang, C.H., Chang, C.T., Ling, H.C., and Chang, C.C. “A mathematical programming model for water usage and treatment network design,” Ind. Eng. Chem. Res., vol. 38, pp. 2666, 1999.
[19] Kuo,W., and Smith, R. “Effluent treatment systemdesign,” Chem. Eng. Sci., vol. 52, pp. 4273, 1997.
[20] Kuo, W. and Smith, R. “Design of water-using systems involving regeneration,”Trans. Inst. Chem. Eng., vol. 76, pp. 94, 1998.
[21] L.E. Savulescu , M. Sorin and R. Smith “Direct and indirect heat transfer in water network systems,” Applied Thermal Engineering, vol. 22, pp. 981, 2002.
[22] Linnhoff, B., and Hindmarsh, E. “The pinch design method of heat exchanger networks,”Chem. Eng. Sci., vol. 38, pp. 745, 1983.
[23] Luciana Savulescu, Jin-Kuk Kim. and Robin Smith “Studies on simultaneous energy and water minimisation Part I: Systems with no water reuse,” Chem. Eng. Sci.,vol. 60, pp. 3279, 2005.
[24] Luciana Savulescu, Jin-Kuk Kim. and Robin Smith “Studies on simultaneous energy and water minimisation Part II: Systems with maximumreuse of water,” Chem. Eng. Sci., vol. 60, pp. 3291, 2005.
[25] Quesada, I. and Grossmann, L. E. “Global optimization of bilinear process networks with multicomponent flows,” Comp. Chem. Eng., vol. 19, pp. 1219, 1995.
[26] Takama, N., Kuriyama,T., Shiroko, K. and Umeda, T. “Optimal water allocation in a petroleum refinery,” Comp. Chem. Eng., vol. 4, pp. 251, 1980.
[27] Wang, Y., and Smith, R. “Wastewater minimisation,” Chem. Eng. Sci., vol. 53,pp. 2595, 1994.
[28] Wang, Y. and Smith, R. “Design of distributed effluent treatment system,” Chem.Eng. Sci., vol. 49, pp. 3127, 1994.
[29] Wang, Y. and Smith, R. “Wastewater minimization,” Chem. Eng. Sci., vol. 49,pp. 981, 1994.
[30] Yee, T.F. and Grossmann, I.E. “Simultaneous optimization models for heatintegration-II Heat exchanger network synthesis,” Comp. Chem. Eng., vol. 14,pp. 1165, 1990b.
[31] Yee, T.F., Grossmann, I.E and Kravanja, Z. “Simultaneous optimization models for heat integration-I. Area and energy targeting and modeling fomulti-stream exchangers,”Comp. Chem. Eng., vol. 14, pp. 1151, 1990a.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28904-
dc.description.abstract本研究針對工廠中需考慮操作溫度的用水網路設計提供了一個數學方法,同時考慮了滿足所有製程用水單元需求的最適化水網路設計,以及最適化的熱交換網路設計。另外,在考慮熱整合的水網路型態上,也將再生再利用和再生再循環利用水網路,兩者不同型態的水網路設計,詳加說明,並利用兩個簡單的例子加以分辨其水網路型態的不同,並加以延伸討論其熱交換網路結構上的不同。而這個以超結構為背景數學模式建構,包含了許多實際操作的限制式,例如供應水流量限制,操作成本,污水處理成本,公用能源成本和年度總成本等等,最後將產生一個混合整數非線性規劃的問題;為了求得最適化水網路具有熱整合設計結構與設計成本考量上的平衡,本研究利用不同的目標函數,提出分段式循序漸近的方法使考慮熱整合的用水網路達到最適化。最後,利用文獻上的一些例子用此方法證明可行並且討論他們的優勢。zh_TW
dc.description.abstractIn this study, a mathematical programming approach for synthesis of water network with energy integration in chemical plants is developed.This approach considers simultaneously the optimal water networks to satisfy demands of water-using unit and optimal treatment of effluent streams. Concept of regeneration reuse and regeneration recycling water networks with heat integration is explained and distinguished in this method. The superstructure-based mathematical programming approach, which includes many practical operating constraints, flowrate limitations of water supply, operating costs, treatment costs, utility costs, and total annualized cost (TAC), will result in a mixed-integer nonlinear programming problem (MINLP) for synthesis of water network with energy integration. Complex trade-off involving optimal water networks design structure, as well as design costs has been included in this MINLP problem.
Therefore, different objections is presented for using sequential design in this study, and there are analytic comparisons between water-using network with heat integration designs for optimal water supply flowrates, optimal utility cost and optimal total annual cost. Furthermore, three water-using processes having different design objectives are used to demonstrate this approach. Finally, some examples from literature are employed to demonstrate the applicability of the proposed strategy and discuss their advantages.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:28:48Z (GMT). No. of bitstreams: 1
ntu-96-R94524014-1.pdf: 4003977 bytes, checksum: 09ff77e241e556957eab2876687cb76e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 緒論 1
1.1 前言 ………………………………………………1
1.2 整合性水網路設計之發展與型態說明 …………3
1.3 整合性熱交換器網路之發展介紹 ………………5
1.4 具有熱整合的水網路之發展介紹 ………………6
1.5 文獻回顧 …………………………………………7
1.6 研究動機與目的 …………………………………8
1.7 組織章節 …………………………………………9
2 製程用水網路最適化之模式建構 11
2.1 模式建立之背景說明……………………………11
2.2 模式建立之基本假設條件………………………12
2.3 模式建立之圖解說明……………………………13
2.4 模式之符號、集合、系統參數與系統變數
(Indices,Sets,Parmeters,and Variables)…14
2.4.1 指標符號說明(Indices)………………15
2.4.2 集合說明(Sets) ………………………15
2.4.3 系統參數(Parameters) ………………16
2.4.4 系統變數(Variables)…………………17
2.5 限制式 (Constraints)…………………………20
2.5.1 流量平衡與溶質平衡以及能量平衡
(Water/Solute/Energy Balances) …20
2.5.2 系統對外排放濃度和溫度 (Discharge
Concentration and Temperature) …27
2.5.3 再生再循環的排除 (Elimination of
Regeneration Recycling)……………30
2.5.4 成本函數 (Cost Functions)…………31
2.6 目標函數 (Objectives) ………………………32
2.6.1 目標函數 (1):最少的供應水流量
(Objective Functions (1):Minimum
Supply Water)…………………………33
2.6.2 目標函數 (2):最少的進入製程用水單元
和污水處理單元水流量 (Objective
Functions (2):Minimum Supply Water
into water-using units and
regeneration units)…………………33
2.7 設計策略 (Design Strategy)…………………34
3 模式之情境模擬暨結果分析與討論 (一) 35
3.1 最適化軟體………………………………………36
3.2 例一之情境模擬…………………………………36
3.2.1 例一之模擬結果分析與討論 …………36
3.3 例二之情境模擬…………………………………40
3.3.1 例二之模擬結果分析與討論 …………40
4 熱交換器網路之設計流程建構 47
4.1 設計流程建立之背景說明………………………47
4.2 模式建立之圖解說明……………………………50
4.3 模式之符號、集合、系統參數與系統變數
(Indices,Sets,Parmeters,and Variables)…50
4.3.1 指標符號說明 (Indices) ……………50
4.3.2 集合說明 (Sets)………………………51
4.3.3 系統參數 (Parameters)………………51
4.3.4 系統變數 (Variables) ………………52
4.3.5 目標函數和限制式 (Objective
Functions and Constraints) ………55
5 模式之情境模擬暨結果分析與討論 (二) 73
5.1 例一之情境模擬 (2)……………………………75
5.1.1 例一之模擬結果分析與討論 …………75
5.1.2 例二之模擬結果分析與討論 …………77
6 結論與未來展望 83
6.1 結論………………………………………………83
6.2 未來展望…………………………………………84
作者簡歷 ………………………………………………89
dc.language.isozh-TW
dc.title以數學規劃法做熱整合用水網路最適化設計之研究zh_TW
dc.titleSynthesis of Water Network with Heat Integration
by Mathematical Programming Approach
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張玨庭(Chuei-Tin Chang),王逢盛(Feng-Sheng Wang),黃孝平(Hsiao-Ping Huang),余政靖(Cheng-Ching Yu)
dc.subject.keyword用水網路,熱交換器網路,zh_TW
dc.subject.keywordWater-using network (WUN),Heat exchanger network (HEN),en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2007-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved