請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王興國(Hsing-Kuo Wang) | |
| dc.contributor.author | Yu-Kuang Wu | en |
| dc.contributor.author | 吳堉光 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:26:40Z | - |
| dc.date.available | 2007-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 1. Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes. J Athl Train 2004;39(1):24-31.
2. Baechle. TR, Earle RW. National Strength and Conditioning Association. 2nd ed.; 2000. 3. Kuitunen S, Avela J, Kyrolainen H, Komi PV. Voluntary activation and mechanical performance of human triceps surae muscle after exhaustive stretch-shortening cycle jumping exercise. Eur J Appl Physiol 2004;91(5-6):538-44. 4. Maffiuletti NA, Dugnani S, Folz M, Di Pierno E, Mauro F. Effect of combined electrostimulation and plyometric training on vertical jump height. Med Sci Sports Exerc 2002;34(10):1638-44. 5. Bosco C, Tihanyi J, Komi PV, Fekete G, Apor P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol Scand 1982;116(4):343-9. 6. Wilk KE, Voight ML, Keirns MA, Gambetta V, Andrews JR, Dillman CJ. Stretch-shortening drills for the upper extremities: theory and clinical application. J Orthop Sports Phys Ther 1993;17(5):225-39. 7. Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech 2000;33(10):1197-206. 8. Kubo K, Kanehisa H, Fukunaga T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 2002;538(Pt 1):219-26. 9. Kubo K, Kanehisa H, Fukunaga T. Effects of cold and hot water immersion on the mechanical properties of human muscle and tendon in vivo. Clin Biomech (Bristol, Avon) 2005;20(3):291-300. 10. Carroll TJ, Riek S, Carson RG. The sites of neural adaptation induced by resistance training in humans. J Physiol 2002;544(Pt 2):641-52. 11. Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular Changes in Female Collegiate Athletes Resulting From a Plyometric Jump-Training Program. J Athl Train 2004;39(1):17-23. 12. POTTEIGER JA, LOCKWOOD RH, HAUB MD, DOLEZAL BA, KHALID S. ALMUZAINI, SCHROEDER JM et al. Muscle Power and Fiber Characteristics Following 8 Weeks of Plyometric Training(Abstract). The Journal of Strength and Conditioning Research 1999;13:pp. 275-9. 13. Maffiuletti NA, Pensini M, Martin A. Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol 2002;92(4):1383-92. 14. Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 2005;37(8):1291-9. 15. Barak Y, Ayalon M, Dvir Z. Spectral EMG changes in vastus medialis muscle following short range of motion isokinetic training. J Electromyogr Kinesiol 2006;16(5):403-12. 16. Lepers R, Millet GY, Maffiuletti NA. Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 2001;33(11):1882-8. 17. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol 1999;521 Pt 1:307-13. 18. Kubo K, Kawakami Y, Kanehisa H, Fukunaga T. Measurement of viscoelastic properties of tendon structures in vivo. Scand J Med Sci Sports 2002;12(1):3-8. 19. Kubo K, Kanehisa H, Fukunaga T. Effects of transient muscle contractions and stretching on the tendon structures in vivo. Acta Physiol Scand 2002;175(2):157-64. 20. Pincivero DM, Gandhi V, Timmons MK, Coelho AJ. Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions. J Biomech 2006;39(2):246-54. 21. Linford CW, Hopkins JT, Schulthies SS, Freland B, Draper DO, Hunter I. Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle. Archives of physical medicine and rehabilitation 2006;87(3):395-401. 22. Kurokawa S, Fukunaga T, Nagano A, Fukashiro S. Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J Appl Physiol 2003;95(6):2306-14. 23. Ichinose Y, Kanehisa H, Ito M, Kawakami Y, Fukunaga T. Morphological and functional differences in the elbow extensor muscle between highly trained male and female athletes. Eur J Appl Physiol Occup Physiol 1998;78(2):109-14. 24. Muramatsu T, Muraoka T, Kawakami Y, Shibayama A, Fukunaga T. In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 2002;92(1):129-34. 25. Basmajian JV, Luca CJD. Muscle Alive. 5th ed.; 1985. 26. Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol 1999;87(6):2090-6. 27. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influences of repetitive muscle contractions with different modes on tendon elasticity in vivo. J Appl Physiol 2001;91(1):277-82. 28. Gondin J, Duclay J, Martin A. Soleus and gastrocnemii evoked V-wave responses increase following neuromuscular electrical stimulation training. J Neurophysiol 2006. 29. Hansen JT, Lambert DR. Netter's Clinical Anatomy. 1st ed. U.S.A.: Icon Learning Systems; 2005. 30. Herbert RD, Gandevia SC. Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 1999;82(5):2271-83. 31. Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 2004;34(4):253-67. 32. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 2002;92(6):2309-18. 33. Funase K, Imanaka K, Nishihira Y, Araki H. Threshold of the soleus muscle H-reflex is less sensitive to the change in excitability of the motoneuron pool during plantarflexion or dorsiflexion in humans. European journal of applied physiology and occupational physiology 1994;69(1):21-5. 34. Zehr PE. Considerations for use of the Hoffmann reflex in exercise studies. European journal of applied physiology 2002;86(6):455-68. 35. Lephart SM, Abt JP, Ferris CM, Sell TC, Nagai T, Myers JB et al. Neuromuscular and biomechanical characteristic changes in high school athletes: a plyometric versus basic resistance program. Br J Sports Med 2005;39(12):932-8. 36. Muraoka T, Chino K, Muramatsu T, Fukunaga T, Kanehisa H. In vivo passive mechanical properties of the human gastrocnemius muscle belly. J Biomech 2005;38(6):1213-9. 37. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 2007;102(1):368-73. 38. Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther 2006;36(5):308-19. 39. Miyatani M, Kanehisa H, Kuno S, Nishijima T, Fukunaga T. Validity of ultrasonograph muscle thickness measurements for estimating muscle volume of knee extensors in humans. Eur J Appl Physiol 2002;86(3):203-8. 40. Ishikawa M, Komi PV. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol 2004;96(3):848-52. 41. Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M. Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J Appl Physiol 2001;90(1):3-9. 42. Almeida-Silveira MI, Perot C, Goubel F. Neuromuscular adaptations in rats trained by muscle stretch-shortening. European journal of applied physiology and occupational physiology 1996;72(3):261-6. 43. Pousson M, Perot C, Goubel F. Stiffness changes and fibre type transitions in rat soleus muscle produced by jumping training. Pflugers Arch 1991;419(2):127-30. 44. Kupa EJ, Roy SH, Kandarian SC, De Luca CJ. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 1995;79(1):23-32. 45. Bilodeau M, Houck J, Cuddeford T, Sharma S, Riley N. Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions. J Electromyogr Kinesiol 2002;12(2):137-45. 46. Gerdle B, Karlsson S, Crenshaw AG, Elert J, Friden J. The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. European journal of applied physiology 2000;81(1-2):2-10. 47. Kubo K, Kanehisa H, Ito M, Fukunaga T. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 2001;91(1):26-32. 48. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo. J Appl Physiol 2004;96(2):540-4. 49. Fukunaga T, Kawakami Y, Kuno S, Funato K, Fukashiro S. Muscle architecture and function in humans. J Biomech 1997;30(5):457-63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28864 | - |
| dc.description.abstract | 前言:增強式運動常加入運動員訓練中,目的為加強爆發力,這是由於在需要大量及快速力量的運動中,爆發力對運動員的勝負佔很大的關鍵。過去相信此訓練與運動神經調控與肌肉肌腱能量運用有關。增強式運動的本質為一個快速且力量大的動作,過程包含了(一)、參與肌肉收縮前的伸展或以反向動作來激發(二)、伸展 – 收縮循環,其主要目的是將神經系統的興奮性提高,來增加神經肌肉系統的反應能力,但至今仍無具體研究證實其機制。而過去的學者認為,增強式運動訓練的效果僅在於神經適應方面,對於肌肉型態學的改變(如肌肉截面積等),並沒有產生任何改變。
近年來由於超音波影像的發展,使得我們可以在人體上經由等長收縮的方式,並且藉由超音波影像,測得過去只能從離體實驗 (in vitro) 才能得到的肌肉以及肌腱等複合體的黏彈特性,因此更能反應出肌肉肌腱複合體在人體中真實的表現,以及訓練後之變化。此外,本實驗也利用神經電刺激的方式,評估肌肉活化程度,以及神經傳導測試週邊神經特性,探討在整個運動訓練後,腓腸肌肌肉因為中樞以及週邊神經的改變而造成活化程度的改變。 因此,本實驗藉由超音波影像學,以及表面神經傳導和肌電圖訊號來去對增強式訓練做一個完整的評估與探討,以提供在運動訓練方面,依此方式得以評估神經以及肌肉特性,並依此作為訓練依據,得以達到最佳的運動表現。 目的:討論8週的增強式運動訓練對健康年輕人小腿腓腸肌肌肉活性及機械特性之影響。材料與方法:16位下肢在六個月內沒有因為受傷而接受任何醫療協助的,接受8週增強式訓練前後,接受使用神經傳導檢查,表面肌電圖,等長肌力測力儀,電子量角器以及高頻影像超音波等工具之量測,以了解肌肉活性改變包括(1)肌肉適應情形(2)神經元的改變(3)神經傳導速率的變化以及肌肉肌腱複合體的機械特性,包括肌肉(1)肌束長度(2)肌束與深層腱鞘的角度(3)肌束彎曲度(4)肌肉組成,以及肌腱腱鞘複合體的 (1) 剛性與 (2)遲滯現象以及機電傳導延遲時間。結果:第四週時神經適應改變已達顯著,並且反應在肌肉活化程度(+13%, p<0.0083)以及比目魚肌標準化肌電訊號方均跟值(+56%, p<0.0083)上,最大自主用力同時伴隨著增加(+9%, p<0.0083)。八週訓練結束後,肌腱腱鞘複合體之剛性變大(+48%, p<0.0083),跳高增加量也在八週訓練結束後達顯著差異。然而在肌肉本身的結構以及組成上面,經由增強式訓練後,並沒有顯著的變化。結論:八週的增強式訓練藉由神經適應以及肌腱腱鞘複合體剛性的改變,提昇最大自主用力以及增進跳高高度的表現。 | zh_TW |
| dc.description.abstract | Introduction:Plyometric exercise training has been used to train athlete for developing a explosive force. This explosive force is the key point of the competition in exercise requiring large power. It is believed that plyometric exercise training may affect neural adaptation and the usage of energy in tendon. Plyometric exercise is defined as a fast and powerful movement using a active eccentric contraction induce a powerful concentric contraction (stretch-shortening cycle(SSC)). Purpose of plyometric exercise is to increase the level of excitation of neural system to improve the ability of reaction action of neuromuscular system, but the mechanism is not well understood. Previous study suggested that the effects of plyometric exercise training dominant in neural adaptation rather than the structure or morphology (ex: cross-section area) change in the muscle.
Due to the development of ultrasonography, we could detect the viscoelastic properties in vivo in muscle-tendon complex by isometric contraction. By these techniques, we could understand the actual characteristics in human being and the change after training. In the other way, we use twitch interpolation technique to detect the change of muscle activation. Accordingly, the study is to completely detect the effect of plyometric exercise training by ultrasonography, nerve conduction velocity and electromyography. The results could be an information for assessing the characteristics of neuron and muscle and a principle for training to achieve the maximum exercise performance. Purpose:To detect the effects on muscle activation level and mechanical properties of human gastrocnemius muscle of eight weeks plyometric exercise training. Methods and Materials:Sixteen healthy young college students without requiring medical service for lower limb due to injury in past 6 months accept 8 weeks plyometric exercise training. Using nerve conduction velocity test, surface electromyography, isometric dynamometer, electrogoniometer and ultrasonography to detect the change of (1)muscle activation level. (2)number of α-motorneuron. (3)nerve conduction velocity. And the mechanical properties of muscle-tendon complex are including (1)fascicle length. (2)fascicle angle. (3)fascicle curvature in muscle(4)muscle composition and (1)stiffness (2)hysterisis in tendon and electromechanical delay are also analysis. Result:In 4 weeks, there is a significantly increased in neural adaptation reflected in muscle activation(+13%, p<0.0083) and RMS-EMG /Mmax(+56%, p<0.0083) of soleus muscle. The isometric maximal voluntary contraction also increased(+9%, p<0.0083)significantly. After 8 weeks training, there is significantly increased in stiffness of tendon-aponeurosis complex(+48%, p<0.0083) and the jumping performance. However, there is no significant change in muscle architecture and composition after 8 weeks plyometric exercise training. Conclusion: The effects of 8 weeks plyometric exercise training may increase isometric maximal voluntary contraction and jumping performance by the neural adaptation and the mechanical property of tendon-aponeurosis complex. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:26:40Z (GMT). No. of bitstreams: 1 ntu-96-R94428008-1.pdf: 7624583 bytes, checksum: d9f9bf78bdd3ae55f3c586ab0115d6b1 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 2
致謝 3 目錄 4 表目錄 6 圖目錄 7 中文摘要 8 英文摘要 10 第一章 前言 12 第一節 研究背景與動機 12 第二節 研究目的 13 第二章 文獻回顧 14 第一節 增強式訓練 14 第二節 肌肉活化程度量測 18 第三節 肌肉型態學與串聯黏彈組織特性量測 19 第四節 肌肉組成量測 20 第五節 機電傳導延遲 21 第三章 研究方法 23 第一節 基本假設 23 虛無假設 23 檢定假設 24 第二節 研究設計 25 一. 自變項(independent variables) 25 二. 依變項(dependent variables) 25 第三節 研究對象 27 第四節 測量工具 27 第五節 實驗流程 29 一. 實驗方式 29 二. 量測方式 31 三. 統計方法 41 第四章 結果 42 肌肉活化程度 42 肌肉型態 43 串聯黏彈組織特性 43 肌肉組成 44 機電傳導延遲 44 最大自主用力以及垂直跳高 45 各參數之間的相關性 45 第五章 討論 47 肌肉活化程度 47 肌肉型態 50 串聯黏彈組織特性 51 肌肉組成 53 機電傳導延遲 55 最大自主用力以及垂直跳高 56 各參數之間的相關性 57 第六章 結論 59 第七章 實驗限制 59 第八章 未來研究 59 第九章 參考文獻 60 附錄一:本實驗結果圖表 66 附錄二:臨床試驗受試者說明及同意書 76 附錄三:倫理委員會同意書 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最大自主用力 | zh_TW |
| dc.subject | 增強式運動 | zh_TW |
| dc.subject | 肌肉活化 | zh_TW |
| dc.subject | 神經適應 | zh_TW |
| dc.subject | 肌肉結構 | zh_TW |
| dc.subject | plyometric exercise | en |
| dc.subject | muscle architecture | en |
| dc.subject | neural adaptatio | en |
| dc.subject | muscle activation | en |
| dc.subject | maximal voluntary contraction | en |
| dc.title | 增強式訓練對腓腸肌神經肌肉及機械特性之影響 | zh_TW |
| dc.title | The Neuromuscular and Mechanical Effects of Plyometric Exercise Training on Human Gastrocnemius Muscle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林光華(Kwan-Hwa Lin),王亭貴(Tyng-Guey Wang) | |
| dc.subject.keyword | 增強式運動,肌肉活化,神經適應,肌肉結構,最大自主用力, | zh_TW |
| dc.subject.keyword | plyometric exercise,muscle activation,neural adaptatio,muscle architecture,maximal voluntary contraction, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
