請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | Pei-Jing Chen | en |
| dc.contributor.author | 陳霈璟 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:26:33Z | - |
| dc.date.available | 2007-08-01 | |
| dc.date.copyright | 2007-08-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-26 | |
| dc.identifier.citation | 1. Arjmand N, Shirazi-Adl A. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks. Med Eng Phys 2006;28:504-14.
2. Bernhardt P, Wilke HJ, Wenger KH, et al. Multiple muscle force simulation in axial rotation of the cervical spine. Clin Biomech (Bristol, Avon) 1999;14:32-40. 3. Brown SH, Potvin JR. Constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates. J Biomech 2005;38:745-54. 4. Buchanan TS, Shreeve DA. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. J Biomech Eng 1996;118:565-74. 5. Edgerton VR, Wolf SL, Levendowski DJ, et al. Theoretical basis for patterning EMG amplitudes to assess muscle dysfunction. Med Sci Sports Exerc 1996;28:744-51. 6. Essendrop M, Andersen TB, Schibye B. Increase in spinal stability obtained at levels of intra-abdominal pressure and back muscle activity realistic to work situations. Appl Ergon 2002;33:471-6. 7. Gardner-Morse MG, Stokes IA. Trunk stiffness increases with steady-state effort. J Biomech 2001;34:457-63. 8. Gay RE, Ilharreborde B, Zhao K, et al. Sagittal plane motion in the human lumbar spine: comparison of the in vitro quasistatic neutral zone and dynamic motion parameters. Clin Biomech (Bristol, Avon) 2006;21:914-9. 9. Kandziora F, Pflugmacher R, Scholz M, et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 2001;26:1028-37. 10. Kettler A, Hartwig E, Schultheiss M, et al. Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech 2002;35:339-46. 11. Kettler A, Wilke HJ, Dietl R, et al. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 2000;92:87-92. 12. Lee PJ, Rogers EL, Granata KP. Active trunk stiffness increases with co-contraction. J Electromyogr Kinesiol 2006;16:51-7. 13. Mayer TG, Smith SS, Keeley J, et al. Quantification of lumbar function. Part 2: Sagittal plane trunk strength in chronic low-back pain patients. Spine 1985;10:765-72. 14. Mimura M, Panjabi MM, Oxland TR, et al. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 1994;19:1371-80. 15. Missaghi B. Sternocleidomastoid syndrome: a case study. JCCA J Can Chiropr Assoc 2004;48:201-5. 16. Nordin M, Frankel VH. Baisc Biomechanics of The Musculoskeletal Systemed, 2003. 17. Panjabi M, Abumi K, Duranceau J, et al. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine 1989;14:194-200. 18. Panjabi MM. Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 1988;13:1129-34. 19. Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003;13:371-9. 20. Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 1992;5:390-6; discussion 7. 21. Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine 2001;26:2692-700. 22. Parkkola R, Kormano M. Lumbar disc and back muscle degeneration on MRI: correlation to age and body mass. J Spinal Disord 1992;5:86-92. 23. Richter M, Wilke HJ, Kluger P, et al. Load-displacement properties of the normal and injured lower cervical spine in vitro. Eur Spine J 2000;9:104-8. 24. Roth JK, Roth RS, Weintraub JR, et al. Cervicogenic headache caused by myofascial trigger points in the sternocleidomastoid: a case report. Cephalalgia 2007;27:375-80. 25. Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 2003;16:418-23. 26. Snijders CJ, Hoek van Dijke GA, Roosch ER. A biomechanical model for the analysis of the cervical spine in static postures. J Biomech 1991;24:783-92. 27. Tominaga T, Dickman CA, Sonntag VK, et al. Comparative anatomy of the baboon and the human cervical spine. Spine 1995;20:131-7. 28. Vasavada AN, Li S, Delp SL. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 1998;23:412-22. 29. Wilke HJ, Claes L, Schmitt H, et al. A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 1994;3:91-7. 30. Wilke HJ, Wolf S, Claes LE, et al. Influence of varying muscle forces on lumbar intradiscal pressure: an in vitro study. J Biomech 1996;29:549-55. 31. Wilke HJ, Wolf S, Claes LE, et al. Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 1995;20:192-8. 32. Zhao F, Pollintine P, Hole BD, et al. Discogenic origins of spinal instability. Spine 2005;30:2621-30. 33. 游祥明, 宋晏仁, 古宏海, et al. 解剖學ed: 華杏機構叢書. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28862 | - |
| dc.description.abstract | 背景:根據脊椎穩定度的研究,肌肉力量有助於增加脊椎穩定度,但以往的研究缺乏肌肉功能缺損後,肌力調整對脊椎穩定度之影響。
目的:探討頸椎肌肉功能缺損對頸椎穩定度的影響,並觀察特定肌肉功能缺損後,肌力調整的模式與椎體穩定度的關係。 材料與方法:採用8副豬頸椎(C2-T1)做為試樣,以尼龍繩模擬胸鎖乳突肌(Sternocleidomastoid,SCM)、夾肌(Splenius capitis,SPL),與半棘肌(Semispinalis capitis,SSC)等三組肌肉走向,並在末端架設砝碼以模擬肌肉力量。實驗中模擬的肌肉狀況分別為:無肌肉力量、正常肌肉力量、右側SCM肌肉功能缺損。在右側SCM功能缺損的部分,除了模擬周圍肌群無補償行為外,還採用兩種最佳化條件對周圍肌群進行肌力調整,分別為「能量消耗最小值」,以及「椎間盤受力最小值」。以實驗室自製的穩定度測試機台對各種肌肉條件之試樣施予0~2Nm的外部負載,觀察頸椎活動度的變化。量測參數包含活動度(ROM)、中性區(NZ)、初始位置變化量(δIP),以及C7-T1節椎間盤所受軸向力(Fz)。 結果:相較於正常肌肉力量,在肌肉功能缺損的狀況下,若周邊肌肉力量未調整,試樣會有較大的初始位置變化量(4.1±1.2°)。而當周邊肌肉力量調整後,試樣的初始位置變化量與正常肌肉力量相比,並無顯著性差異,但試樣的活動度與中性區有顯著性的增加。此外,若僅比較兩種調整機制對頸椎力學性質的影響,頸椎在能量消耗最小的調整機制下,有較小的活動度與中性區(ROM:14.6±1.7°、NZ:4.7±1.1°),但椎間盤所受力較大(42.9±0.7N)。 結論:肌肉功能缺損時,周圍肌群肌力的調整有助於椎體姿勢的恢復,但穩定度的恢復卻有限。此外,對於兩種調整機制而言,雖然能量消耗最小的調整機制雖會對椎間盤造成較大的軸向力,但卻較能提供椎體的穩定度。 | zh_TW |
| dc.description.abstract | Background. Spinal stability is thought to increase by muscle forces. However, the relationship between spinal stability and muscle dysfunction with respect to different compensatory strategies are unknown.
Object. To investigate the stability of the cervical spine with an damaged muscle, specifically to evaluate the compensation provided by the surrounding muscles. Methods. Eight porcine cervical spines (C2-T1) were acquired. Neck muscles pairs were simulated by cables attached to the specimen, including: sternocleidomastoid (SCM), semispinalis captis (SSC), and splenius captis (SPL). A fixed weight was suspended at the end of each cable to simulate the muscle force. Each group was tested : normal muscle forces, zero muscle force, and right side SCM dysfunction with three compensation strategies minimization of the summation of the squared 1) muscle forces, 2) axial forces, 3) no compensation. The normal muscle force group served as the control condition. The samples were tested in flexion/extension using pure moments (0~2Nm), without axial preload. In the present study, the parameters measured include the range of motion (ROM), neutral zone (NZ), deviation of initial position (δIP), and axial load (Fz) at the C7-T1 disc. Result. The maximum δIP, from the normal muscle force condition, was the group with right side SCM dysfunction without compensation. Compensation of the right side SCM dysfunction by surrounding muscles did not significantly increase δIP, when compared to the normal condition. Compared to the normal condition, the ROM and NZ was significantly increased for the right side SCM dysfunction group compensated either by minimizing muscle force or by minimizing axial forces. The ROM and NZ in the compensation strategy which minimized muscle forces was smaller than the strategy which minimized axial forces. Fz in the compensation strategy which minimized muscle forces was larger than the compensation strategy which minimized axial force. Conclusion. The compensation strategy which minimized the muscle forces provided better spinal stability than the strategy using minimized axial forces. In conclusion, the muscles surrounding an impaired muscle were unable to stabilize the cervical spine, when compared to the normal muscle condition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:26:33Z (GMT). No. of bitstreams: 1 ntu-96-R94548010-1.pdf: 1508950 bytes, checksum: 5a9bca873e909b6691905d1e7a73f827 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 第一章 序論 1 1-1前言 1 1-2脊椎構造 1 1-3頸部肌肉概述 5 1-4文獻回顧 8 1-4-1穩定度簡介 8 1-4-2穩定度量測方式 10 1-4-3穩定度研究範疇 12 1-5 研究目的 14 第二章 材料與方法 15 2-1實驗設備 15 2-1-1穩定度測試機台 15 2-1-2受力量測裝置 16 2-1-3運動分析系統 17 2-2試樣準備流程 18 2-3實驗設計 19 2-3-1肌肉模擬條件 20 2-3-2實驗流程 24 2-3-3實驗參數 25 第三章 實驗結果 27 3-1位移–負載曲線圖 27 3-2活動度(ROM)、中性區(NZ)、初始位置變化量(δIP)以及軸向力(Fz) 28 第四章 討論與結論 30 4-1肌肉模擬方式 30 4-2實驗各參數結果討論 31 4-2-1活動度(ROM)與中性區(NZ) 31 4-2-2初始位置變化量(δIP)以及軸向力(Fz) 32 4-3不同調整機制之影響 32 4-4實驗限制 32 4-4-1方法限制 32 4-4-2材料限制 33 4-5結論與未來展望 34 參考文獻 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物力學 | zh_TW |
| dc.subject | 穩定度 | zh_TW |
| dc.subject | 肌肉模擬 | zh_TW |
| dc.subject | 肌肉功能缺損 | zh_TW |
| dc.subject | 離體實驗 | zh_TW |
| dc.subject | in vitro study | en |
| dc.subject | muscle dysfunction | en |
| dc.subject | muscle simulation | en |
| dc.subject | stability | en |
| dc.subject | biomechanics | en |
| dc.title | 頸部肌肉功能缺損對頸椎穩定度之影響 | zh_TW |
| dc.title | Effect of cervical muscle dysfunction on the spine stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林光華,王淑芬 | |
| dc.subject.keyword | 生物力學,穩定度,肌肉模擬,肌肉功能缺損,離體實驗, | zh_TW |
| dc.subject.keyword | biomechanics,stability,muscle simulation,muscle dysfunction,in vitro study, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
