請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28850完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁 | |
| dc.contributor.author | Ruei-Lin Hsu | en |
| dc.contributor.author | 徐瑞璘 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:25:50Z | - |
| dc.date.available | 2013-07-27 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116: 313-327
Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214: 764–766 Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223-230 Baskakov I, Disterer P, Breydo L, Shaw M, Gill A, James W, Tahiri-Alaoui A (2005) The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett 579: 2589-2596 Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46: 417-428 Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer's disease. Lancet 368: 387-403 Blessed G, Tomlison BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral gray matter of elderly subjects. Br J Psychiatry 114: 797-811 Bocharova OV, Breydo L, Parfenov AS, Salnikov VV, Baskakov IV (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346: 645-659 Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218: 1309–1311 Bosques CJ, Imperiali B (2003) The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc Natl Acad Sci U S A 100: 7593-7598 Brown P (1996) Environmental causes of human spongiform encephalopathy. 139-154. Humana Press, Totowa, N.J. Brown P, Cervenakova L, Goldfarb LG, McCombie WR, Rubenstein R, Will RG, Pocchiari M, Martinez-Lage JF, Scalici C, Masullo C, et al. (1994) Iatrogenic Creutzfeldt-Jakob disease: an example of the interplay between ancient genes and modern medicine. Neurology 44: 291-293 Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339-1347 Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 30: 7672-7680 Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273: 13203-13207 Chabry J, Priola SA, Wehrly K, Nishio J, Hope J, Chesebro B (1999) Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol 73: 6245-6250 Chen PY, Lin CC, Chang YT, Lin SC, Chan SI (2002) One O-linked sugar can affect the coil-to-beta structural transition of the prion peptide. Proc Natl Acad Sci U S A 99: 12633-12638 Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519-550 Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383: 685-690 Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9: 907-913 DeArmond SJ (2004) Discovering the mechanisms of neurodegeneration in prion diseases. Neurochem Res 29: 1979-1998 DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41: 221-235 DeMarco ML, Daggett V (2005) Local environmental effects on the structure of the prion protein. C R Biol 328: 847-862 Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15: 3-16 Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, Hemmeter U, Paulsen S, Teipel SJ, Brettschneider S, Spottke A, Nolker C, Moller HJ, Wei X, Farlow M, Sommer N, Oertel WH (2004) Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry 75: 1472-1474 Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94: 13452-13457 Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47: 91-97 Ermonval M, Mouillet-Richard S, Codogno P, Kellermann O, Botti J (2003) Evolving views in prion glycosylation: functional and pathological implications. Biochimie 85: 33-45 Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathol 14: 11-20 Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. Embo J 15: 1255-1264 Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543-546 Fujita M, Hong K, Ito Y, Misawa S, Takeuchi N, Kariya K, Nishimuro S (1995) Transport of nattokinase across the rat intestinal tract. Biol Pharm Bull 18: 1194-1196 Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197: 1340-1347 Giri R, Shen Y, Stins M, Du Yan S, Schmidt AM, Stern D, Kim KS, Zlokovic B, Kalra VK (2000) beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 279: C1772-1781 Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043-1044 Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70: 21-33 Harper JD, Lansbury PT, Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66: 385-407 Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19: 8876-8884 Hauw JJ, Sazdovitch V, Laplanche JL, Peoc'h K, Kopp N, Kemeny J, Privat N, Delasnerie-Laupretre N, Brandel JP, Deslys JP, Dormont D, Alperovitch A (2000) Neuropathologic variants of sporadic Creutzfeldt-Jakob disease and codon 129 of PrP gene. Neurology 54: 1641-1646 Horiuchi M, Priola SA, Chabry J, Caughey B (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A 97: 5836-5841 Hosszu LL, Jackson GS, Trevitt CR, Jones S, Batchelor M, Bhelt D, Prodromidou K, Clarke AR, Waltho JP, Collinge J (2004) The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPC. J Biol Chem 279: 28515-28521 Huang Z, Prusiner SB, Cohen FE (1996) Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des 1: 13-19 Jahn TR, Radford SE (2005) The Yin and Yang of protein folding. Febs J 272: 5962-5970 James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94: 10086-10091 Jany KD, Lederer G, Mayer B (1986) Amino acid sequence of proteinase K from the mold Tritirachium album limber. FEBS Lett 199: 139-144 Jarrett JT, Lansbury PT, Jr. (1993) Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058 Johnson RT, Gibbs CJ, Jr. (1998) Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med 339: 1994-2004 Kaneko K, Peretz D, Pan KM, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen FE, Baldwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Sci U S A 92: 11160-11164 Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733-736 Kitamoto T, Tateishi J, Tashima T, Takeshita I, Barry RA, DeArmond SJ, Prusiner SB (1986) Amyloid plaques in Creutzfeldt-Jakob disease stain with prion protein antibodies. Ann Neurol 20: 204-208 Korth C, Kaneko K, Prusiner SB (2000) Expression of unglycosylated mutated prion protein facilitates PrP(Sc) formation in neuroblastoma cells infected with different prion strains. J Gen Virol 81: 2555-2563 Krebs MR, Bromley EH, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149: 30-37 Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986b) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122: 1-5 Kretzschmar HA, Stowring LE, Westaway D, Stubblebine WH, Prusiner SB, Dearmond SJ (1986a) Molecular cloning of a human prion protein cDNA. DNA 5: 315-324 Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, Shih JC (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188: 1782-1789 Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120: 701-713 Lee GG, Ferket PR, Shih JCH (1991) Improvement of feather digestibility by bacterial keratinase as a feed additive. FASEB J 59: 1312 Lee LY, Chen RP (2007) Quantifying the sequence-dependent species barrier between hamster and mouse prions. J Am Chem Soc 129: 1644-1652 Lehmann S, Harris DA (1997) Blockade of glycosylation promotes acquisition of scrapie-like properties by the prion protein in cultured cells. J Biol Chem 272: 21479-21487 Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40: 1087-1093 LeVine H, 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309: 274-284 Lewis PA, Tattum MH, Jones S, Bhelt D, Batchelor M, Clarke AR, Collinge J, Jackson GS (2006) Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol 87: 2443-2449 Liemann S, Glockshuber R (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38: 3258-3267 Lin X, Kelemen DW, Miller ES, Shih JC (1995) Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61: 1469-1474 Lin X, Lee CG, Casale ES, Shih JC (1992) Purification and Characterization of a Keratinase from a Feather-Degrading Bacillus licheniformis Strain. Appl Environ Microbiol 58: 3271-3275 Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91: 12243-12247 Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 171: 29-45 Maier M, Seabrook TJ, Lazo ND, Jiang L, Das P, Janus C, Lemere CA (2006) Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer's disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 26: 4717-4728 Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23: 1992-1996 Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82: 4245-4249 Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, Wang L, Casey E, Lu Y, Shiratori C, Lemere C, Duff K (2003) Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 23: 29-33 Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430: 631-639 Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A 83: 2310-2314 Muramoto T, Scott M, Cohen FE, Prusiner SB (1996) Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A 93: 15457-15462 Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9: 448-452 Odetallah NH, Wang JJ, Garlich JD, Shih JC (2003) Keratinase in starter diets improves growth of broiler chicks. Poult Sci 82: 664-670 Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, et al. (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40: 735-746 Pahler A, Banerjee A, Dattagupta JK, Fujiwara T, Lindner K, Pal GP, Suck D, Weber G, Saenger W (1984) Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin. Embo J 3: 1311-1314 Palmer MS, Dryden AJ, Hughes JT, Collinge J (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352: 340-342 Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90: 10962-10966 Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46: 224-233 Parchi P, Zou W, Wang W, Brown P, Capellari S, Ghetti B, Kopp N, Schulz-Schaeffer WJ, Kretzschmar HA, Head MW, Ironside JW, Gambetti P, Chen SG (2000) Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A 97: 10168-10172 Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. Embo J 20: 6692-6699 Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144 Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515-1522 Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363-13383 Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38: 127-134 Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35: 349-358 Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL, Serban D, Carlson GA, et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673-686 Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-321). Nature 382: 180-182 Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413: 282-288 Rogers M, Yehiely F, Scott M, Prusiner SB (1993) Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc Natl Acad Sci U S A 90: 3182-3186 Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A, Dwek RA (1999) Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A 96: 13044-13049 Rudd PM, Wormald MR, Wing DR, Prusiner SB, Dwek RA (2001) Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40: 3759-3766 Schatzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB (1995) Prion protein gene variation among primates. J Mol Biol 245: 362-374 Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173-177 Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, et al. (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59: 847-857 Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106: 1489-1499 Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501-523 Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130: 88-98 Smith CJ, Drake AF, Banfield BA, Bloomberg GB, Palmer MS, Clarke AR, Collinge J (1997) Conformational properties of the prion octa-repeat and hydrophobic sequences. FEBS Lett 405: 378-384 Song ES, Hersh LB (2005) Insulysin: an allosteric enzyme as a target for Alzheimer's disease. J Mol Neurosci 25: 201-206 Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32: 1991-2002 Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229-240 Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81: 678-699 Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84: 139-143 Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111 Suzuki Y, Kondo K, Matsumoto Y, Zhao BQ, Otsuguro K, Maeda T, Tsukamoto Y, Urano T, Umemura K (2003) Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci 73: 1289-1298 Tagliavini F, Prelli F, Verga L, Giaccone G, Sarma R, Gorevic P, Ghetti B, Passerini F, Ghibaudi E, Forloni G, et al. (1993) Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A 90: 9678-9682 Taraboulos A, Rogers M, Borchelt DR, McKinley MP, Scott M, Serban D, Prusiner SB (1990) Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc Natl Acad Sci U S A 87: 8262-8266 Wadsworth JD, Asante EA, Desbruslais M, Linehan JM, Joiner S, Gowland I, Welch J, Stone L, Lloyd SE, Hill AF, Brandner S, Collinge J (2004) Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science 306: 1793-1796 Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535-539 Wang YJ, Zhou HD, Zhou XF (2006) Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug Discov Today 11: 931-938 Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2: 861-871 Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci U S A 99: 3563-3568 Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280: 5892-5901 Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97: 145-150 Zhang H, Kaneko K, Nguyen JT, Livshits TL, Baldwin MA, Cohen FE, James TL, Prusiner SB (1995) Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J Mol Biol 250: 514-526 Zuegg J, Gready JE (2000) Molecular dynamics simulation of human prion protein including both N-linked oligosaccharides and the GPI anchor. Glycobiology 10: 959-974 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28850 | - |
| dc.description.abstract | 類澱粉蛋白是錯誤摺疊的蛋白質聚集而成。由於社會對類澱粉疾病的關注,類澱粉蛋白的研究也愈加熱烈。本論文有兩個主軸,分別在探討普昂疾病與阿茲海默症兩種類澱粉疾病之致病類澱粉蛋白的形成與分解。
普昂疾病是一種傳染性海綿樣腦病變,此病是由內生的普昂蛋白發生構形變異、形成富含β結構的構形而造成。為了探討此構形變異的過程,我們以普昂胜肽和小鼠重組普昂蛋白為材料,以圓二色光譜及螢光光譜來偵測其類澱粉纖維的形成。有鑑於先前研究發現將α-N-乙醯葡萄醣胺接上大頰鼠普昂胜肽108-144的135號殘基絲胺酸會抑制類澱粉纖維的形成,我們試圖以擁有同樣醣化修飾的人類普昂胜肽來干擾纖維形成。由於人類普昂蛋白的129號殘基具有胺基酸多型性(甲硫胺酸或纈胺酸),而經統計顯示此多型性會影響人類罹患普昂疾病的機率,故我們合成了兩種含上述單醣的人類普昂胜肽108-144,觀察醣化及129號殘基多型性對類澱粉纖維形成的影響。結果發現醣化會大大的抑制自發性纖維形成,而且以含醣胜肽的129號殘基為纈胺酸時,纖維的形成較容易。為了進一步觀察干擾現象,我們將含單醣和不含單醣的胜肽依等比例混合來培養纖維,結果含醣胜肽可以延長無醣胜肽形成纖維的遲滯期,但不影響無醣胜肽的纖維延長。 為了更真切地模擬普昂蛋白的構形轉變,我們也嘗試表現及純化帶有一對雙硫鍵的全長小鼠普昂蛋白,並且成功令其形成類澱粉纖維。以此為起點,我們可以進一步將此試管內形成纖維的系統用於研究全長普昂蛋白和普昂胜肽間的干擾現象。 阿茲海默症是一種好發於老年人的神經退化疾病。此病的發生與β類澱粉胜肽(簡稱Aβ)在腦部累積有關,而阿茲海默症患者通常有腦部清除Aβ的功能不彰的問題。研究發現腦中與血液中的Aβ含量存在一種平衡關係,因此依靠酵素分解血液中的可溶性Aβ或Aβ類澱粉纖維將可減少腦中Aβ的含量。納豆激酶(nattokinase)具有血纖維分解活性而且可以食用,因此本研究的第三部份將著重於以納豆激酶分解Aβ所形成的纖維,並比較納豆激酶和另外兩種酵素(PWD-1角質素酶和蛋白酶K)的纖維水解能力。實驗結果顯示納豆激酶有能力在試管中分解Aβ纖維,而且3種受測酵素的纖維水解能力相近。 | zh_TW |
| dc.description.abstract | Amyloids are the aggregates of misfolded proteins. Because of the concern about amyloid diseases in the society, studies on amyloids become more and more popular. In this thesis, we studied the formation and degradation of protein amyloids related to two kinds of amyloid diseases, prion diseases and Alzheimer’s disease.
Prion diseases are also called transmissible spongiform encephalopathies. It has been known that these diseases result from the conformational transition of a host-encoded prion protein to a β-sheet-rich conformer. To study the process of this structural conversion, we utilized circular dichroism and fluorescence spectroscopies to monitor the amyloid fibril formation of various synthetic prion peptides and a recombinant mouse prion protein. Previous studies have shown that an α-N-acetyl- glucosamine (α-GlcNAc) attached to the Ser135 of the hamster prion peptide 108-144 inhibits fibril formation, so we tried to interfere the fibrillogenesis of human prion peptides 108-144 with glycosylated ones. Because there is a polymorphism at residue 129 of human prion protein, either methionine or valine, and this polymorphism modulates disease susceptibility, we synthesized twoα-GlcNAc-linked human prion peptides 108-144 to examine the effect of glycosylation and polymorphism on the fibrillogenesis. The results confirmed the significant inhibitory effect of glycosylation on fibril formation, and showed that fibrils formed more easily when the residue 129 is valine. To investigate the interference between glycosylated and unglycosylated peptides, we mixed one glycosylated peptide and one unglycosylated peptide with equal molar ratio and found that the glycosylated peptides prolonged the lag time of the unglycosylated one only a little and did not inhibit fibril growth of the unglycosylated peptide. For the purpose of mimicking the conformational transition of prion protein more vividly, we tried to express and purify the mouse full-length recombinant prion protein with an intact disulfide bond, and converted this protein into amyloid fibrils successfully. With this cell-free conversion system, we can examine whether there is interference or seeding effect between the full-length prion protein and the prion peptide. Alzheimer’s disease (AD) is one of the most common senile dementia. Amyloid-β peptide (Aβ) has been implicated in the etiology of AD and dysfunction in Aβ clearance is crucial for the accumulation of Aβ in AD brains. There is an equilibrium of Aβ level in the brain and the blood, and removing Aβ, either in the soluble form or amyloid form, in the blood by enzymes might help decrease Aβ content in the brain. In the third part of my study, we focused on the breakdown of the amyloid fibrils formed from Aβ with nattokinase, which is well-known for its fibrinolytic activity and regarded as a healthy food, and compare the fibril-degrading efficiency of nattokinase with the other two subtilisin-like enzymes, proteinase K and PWD-1 keratinase. Our results showed that nattokinase has the potential in clearing Aβ fibrils in vitro, and all three enzymes tested have similar fibril-degrading efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:25:50Z (GMT). No. of bitstreams: 1 ntu-96-R94b46023-1.pdf: 1800144 bytes, checksum: fa92cca3ec805d45687cabe9a1c5f769 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 縮寫表…………………………………….……….i
中文摘要 …………………………………….……….iv Abstract …………………………………….………. V 第一章 緒論 1.1 關於類澱粉纖維…..…..………………..…………………..…….…. 1 1.2 簡介普昂疾病…………………………………….………..……….. 2 1.3 普昂蛋白的結構研究………………………………………………... 4 1.4 普昂蛋白的類澱粉纖維及其形成之模型……………………………… 7 1.5 普昂蛋白構形轉變的相關研究………………………………………. 9 1.6 普昂蛋白的醣化及其對普昂蛋白構形轉變的影響…………………….. 9 1.7 人類普昂疾病與普昂蛋白129號殘基多型性的關係………………….. 11 1.8 β類澱粉胜肽的相關研究…………………………………………... 13 1.8.1 簡介阿茲海默症…………………………………………….….. 13 1.8.2 β類澱粉胜肽的清除策略………………………………………. 15 1.9 Nattokinase…………………………………………………………. 16 1.10 Proteinase K……………………………………………………….. 17 1.11 PWD-1 keratinase………………………………………………….. 17 1.12 本論文的研究動機………………………………………………... 18 第二章 材料與方法 2.1 材料………………………………………………………………. 20 2.1.1 水……………………………………………………………... 20 2.1.2 化學藥品………………………………………………………. 20 2.1.3 載體…………………………………………………………... 22 2.1.4 菌株…………………………………………………………... 22 2.1.5 培養基………………………………………………………… 22 2.1.6 酵素…………………………………………………………… 22 2.2 儀器……...……………………………………………………...… 23 2.3 方法……………………………………………………………….. 23 2.3.1 普昂胜肽的合成、純化與鑑定………………………………….. 23 2.3.2 以光譜記錄普昂胜肽的纖維形成………………………………... 25 2.3.3 穿透式電子顯微鏡……………………………………………... 27 2.3.4 時間相依單光子探測螢光光譜………………………………….. 27 2.3.5 重組普昂蛋白的表現…………………………………………… 28 2.3.6 普昂蛋白的純化與鑑定………………………………………… 28 2.3.7 普昂蛋白的纖維形成…………………………………………… 32 2.3.8 β類澱粉胜肽纖維的水解…………………………………….… 32 第三章 結果與討論 (一) 3.1 O-linked α-GlcNAc對人類普昂胜肽形成類澱粉纖維的影響……...….. 34 3.1.1 α-GlcNAc的修飾抑制人類普昂胜肽形成類澱粉纖維…………… 36 3.1.2 醣化普昂胜肽對普昂胜肽類澱粉纖維形成的干擾作用…………… 42 3.1.3 醣化普昂胜肽可以用普昂胜肽纖維作為纖維形成的晶種………… 47 3.2 從普昂胜肽纖維的thioflavin T (ThT) 螢光壽命探討纖維構造……..…. 49 第四章 結果與討論 (二) 4.1 全長小鼠普昂蛋白的表現與純化…………………………………… 54 4.1.1 全長小鼠普昂蛋白的表現……………………………………… 54 4.1.2全長小鼠普昂蛋白之粗萃取……………………………………. 55 4.1.3以親和層析純化全長小鼠普昂蛋白……………………………... 57 4.1.4以逆相高效液相層析純化全長小鼠普昂蛋白……………………. 60 4.1.5純化之全長小鼠普昂蛋白的身分鑑定…………………………... 63 4.2 全長小鼠普昂蛋白類澱粉纖維的形成…………………………........ 64 第五章 結果與討論 (三) 5.1比較不同蛋白酶對β類澱粉胜肽纖維的水解效力……………………. 66 5.1.1測定蛋白酶活性……………………………………………….. 66 5.1.2比較proteinase K、PWD-1 keratinase與nattokinase對β類澱粉胜肽 纖維的水解效力………………………………………………… 70 第六章 結論與未來展望………………………………………... 73 參考文獻……………………..…………………………….………..… 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類澱粉 | zh_TW |
| dc.subject | 普昂 | zh_TW |
| dc.subject | 纖維 | zh_TW |
| dc.subject | amyloid | en |
| dc.subject | prion | en |
| dc.subject | fibril | en |
| dc.title | 類澱粉蛋白的形成與分解之研究 | zh_TW |
| dc.title | Study of the Formation and Degradation of Protein Amyloids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊健志,王勝仕,李昆達 | |
| dc.subject.keyword | 普昂,類澱粉,纖維, | zh_TW |
| dc.subject.keyword | prion,amyloid,fibril, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
