請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃坤祥 | |
| dc.contributor.author | Yu-Min Wang | en |
| dc.contributor.author | 王育民 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:23:44Z | - |
| dc.date.available | 2016-08-11 | |
| dc.date.copyright | 2011-08-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | 1. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,第二版,台北,2003,pp. 7-8。
2. R. M. German, Powder Injection Molding, Metal Powder Industries Federation, United States of America, 1990, pp. 283. 3. J. S. Ebenhoech and D. C. Krueger, 'Typical defects in PIM parts and how they can be avoided', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1996, Vol. 5, pp. 19.213-219.223. 4. 吳榮源,混練對射出成形影響之研究,國立台灣大學碩士論文,1998,pp. 77-86。 5. R. Raman, W. Slike, and R. M. German, 'Homogeneity of mixed feedstock in powder injection molding ', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1993, Vol. 5, pp. 1-16. 6. R. Y. Wu and W. C. J. Wei, 'Torque evolution and effects on alumina feedstocks prepared by various kneading sequences', Journal of the European Ceramic Society, 2000, Vol. 20, No. 1, pp. 67-75. 7. L. F. Hens and D. Kupp, 'Advanced production methods for different PIM feedstocks', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1995, Vol. 6, pp. 295-302. 8. Y. Tanaka and K. Nakayabayashi, 'Metal Injection moulding powder prodused by high pressure water atomization', Powder Metallurgy, 1998, Vol. 41, No. 1, pp. 47-50. 9. L. Liu, N. H. Loh, B. Y. Tay, S.B.Tor, Y. Murakoshi, and R. Maeda, 'Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding', Materials Characterization, 2005, Vol. 54, No. 3, pp. 230-238. 10. P. Suri, R. P. Koseski, and R. M. German, 'Microstructural evolution of injection molded gas- and water-atomized 316L stainless steel powder during sintering', Materials Science and Engineering: A, 2005, Vol. 402, No. 1-2, pp. 341-348. 11. K. F. Hens and R. M. German, 'Advanced processing of advanced materials via powder injection molding', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1993, Vol. 5, pp. 153–164. 12. Z. Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi, and R. Maeda, 'Binder system for micropowder injection molding', Materials Letters, 2001, Vol. 48, No. 1, pp. 31-38. 13. M. A. Omar, H. A. Davies, P. F. Messer, and B. Ellis, 'The influence of PMMA content on the properties of 316L stainless steel MIM compact', Journal of Materials Processing Technology, 2001, Vol. 113, No. 1-3, pp. 477-481. 14. M. A. Omar, R. Ibrahim, M. I. Sidik, M. Mustapha, and M. Mohamad, 'Rapid debinding of 316L stainless steel injection moulded component', Journal of Materials Processing Technology, 2003, Vol. 140, No. 1-3, pp. 397-400. 15. M. J. Edirisinghe, 'The effect of processing additives on the properties of a ceramic-polymer formulation', Ceramics International, 1991, Vol. 17, No. 2, pp. 89-96. 16. M. J. Yang and R. M. German, 'The interaction between the cemented carbide powder and the binder of powder injection molding feedstock', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1995 Vol. 2, pp. 6.179-6.190. 17. M. J. Yang, S. V. Atre, and R. M. German, 'Wax—based and PEG-based binder system development for metal and ceramic powders', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1996, Vol. 5, pp. 225-232. 18. B. Huang, S. Liang, and X. Qu, 'The rheology of metal injection molding', Journal of Materials Processing Technology, 2003, Vol. 137, No. 1-3, pp. 132-137. 19. S. T. P. Lin and R. M. German, 'The influence of powder loading and binder additive on the properties of alumina injection-moulding blends', Journal of Materials Science, 1994, Vol. 29, No. 20, pp. 5367-5373. 20. M. Youseffi and I. A. Menzies, 'Part I. Development of two new binder systems based on thermoplastic + wax and water soluble (gelling) polymers with improved properties for the powder injection molding of alumina and other ceramic/metallic powders', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1996, Vol. 5, pp. 19-30. 21. Y. Li, L. Li, and K. A. Khalil, 'Effect of powder loading on metal injection molding stainless steels', Journal of Materials Processing Technology, 2007, Vol. 183, No. 2-3, pp. 432-439. 22. A. Mannschatz, S. Hohn, and T. Moritz, 'Powder-binder separation in injection moulded green parts', Journal of the European Ceramic Society, 2010, Vol. 30, No. 14, pp. 2827-2832. 23. R. Miura, Y. Endo, H. Madarame, and S. Takamori, 'On the occurrence and the prevention of a molding defect in metal injection molding', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1995, Vol. 2, pp.6.147-6.160. 24. M. Cao, B. O. Rhee, and C. I. Chung, 'Usefulness of the viscosity measurement of feedstock in powder injection molding', Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1991, Vol. 2, pp. 59-67. 25. B. O. Rhee, M. Y. Cao, H. R. Zhang, E. Streicher, and C. I. Chung, 'Improved wax-based binder formulations for powder injection molding', Advances in Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1991, Vol. 2, pp. 43-58. 26. C. Karatas, A. Sozen, E. Arcaklioglu, and S. Erguney, 'Investigation of mouldability for feedstocks used powder injection moulding', Materials & Design, 2008, Vol. 29, No. 9, pp. 1713-1724. 27. 范揚樑,金屬射出成形脫脂製程中缺陷產生的原因及其解決方法,材料科學與工程學研究所博士論文,2008,pp. 50-54。 28. R. V. B. Oliveira, V. Soldi, M. C. Fredel, and A. T. N. Pires, 'Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics', Journal of Materials Processing Technology, 2005, Vol. 160, No. 2, pp. 213-220. 29. K. H. Hwang and Y. M. Hsieh, 'Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts', Metallurgical and Materials Transactions A, 1996, Vol. 27, No. 2, pp. 245-253. 30. 蘇少欽,金屬粉末射出成形溶劑脫脂製程中缺陷產生原因及解決方法,國立台灣大學碩士論文,2005,pp. 43。 31. H. K. Lin and K. S. Hwang, 'In situ dimensional changes of powder injection-molded compacts during solvent debinding', Acta Materialia, 1998, Vol. 46, No. 12, pp. 4303-4309. 32. S. C. Hu and K. S. Hwang, 'Length change and deformation of powder injection-molded compacts during solvent debinding', Metallurgical and Materials Transactions A, 2000, Vol. 31, No. 5, pp. 1473-1478. 33. K. S. Hwang and T. H. Tsou, 'Thermal debinding of powder injection molded parts: Observations and mechanisms', Metallurgical and Materials Transactions A, 1992, Vol. 23, No. 10, pp. 2775-2782. 34. Y. Kankawa, 'Effects of polymer decomposition behavior on thermal debinding process in metal injection molding', Materials and Manufacturing Processes, 1997, Vol. 12, pp. 681-690. 35. 林恆光,金屬射出成形溶劑脫脂製程缺陷之成因探討,國立台灣大 碩論文,1996,pp. 27-30、37-41。 36. J. E. Japka, 'Iron Powder for Metal Injection Molding', International Journal of Powder Metallurgy, 1991, Vol. 27, No. 2, pp. 107-114. 37. L. Moballegh, J. Morshedian, and M. Esfandeh, 'Copper injection molding using a thermoplastic binder based on paraffin wax', Materials Letters, 2005, Vol. 59, No. 22, pp. 2832-2837. 38. Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standards, D 790-81, 401, 1984. 39. S. C. Hu and K. S. Hwang, 'Length change and deformation of powder injection-molded compacts during solvent debinding', Metallurgical and Materials Transactions A, 2000, Vol. 31, No. 5, pp. 1473-1478. 40. Y. J. Lin and K. S. Hwang, 'Effects of powder shape and processing parameters on heat dissipation of heat pipes with sintered porous wicks', Materials Transactions, JIM, 2009, Vol. 50, No. 10, pp.2427-2434. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28807 | - |
| dc.description.abstract | 金屬射出成形製程的第一個步驟是先將金屬粉末與黏結劑混合,但是若在混合製程或射出製程產生粉膠不均勻的現象,將會使生胚產生缺陷,並在溶劑脫脂、熱脫脂與燒結階段陸續出現問題,其中一個缺陷在生胚澆口表面形成一個較為顏色暗沉的區塊,稱之為蠟痕,主要原因是產生粉膠分離現象,使得此處的黏結劑較其他地方來得多,所以在溶劑脫脂後會下陷而且較為脆弱,此將影響試片的美觀以及性質,故本論文致力於解決此問題。
為了解決粉膠分離現象,本研究以生胚上的蠟痕作為觀察標準,一開始先探討射出參數的調整對蠟痕的影響,發現升高射出溫度、降低射速、降低保壓壓力與提高模子溫度都有助於減小蠟痕。對於鐵粉系統,更換不同的骨架黏結劑如PP(3554)和Fusabond都有助於使蠟痕變小,其中Fusabond系統也可使生胚強度升高並減少生胚在溶劑脫脂時的膨潤現象。熱重分析儀、接觸角與毛細力實驗均證明了更換此兩種骨架黏結劑可讓其與粉末間之匹配性更好,消弭粉膠分離現象。在添加偶合劑方面,加入EVA、1209AC或Exxelor於射料中,有助於生胚強度的提升,但無助於蠟痕問題之解決。在316L不銹鋼粉方面,當不銹鋼粉與PP(3554)和Fusabond這兩種骨架黏結劑混煉時會呈水狀,不利於射出成形,故必須降低黏結劑的含量,提高射料的黏度以便射出成形。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:23:44Z (GMT). No. of bitstreams: 1 ntu-99-R97527054-1.pdf: 4767897 bytes, checksum: 06b40234eb121edb8eca0f64c3fc9eac (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 表目錄 V 圖目錄 VII 第一章 簡介 1 第二章 文獻回顧 2 2-1混煉階段 2 2-1-1粉末性質 4 2-1-2黏結劑特性 5 2-1-3粉末與黏結劑之間的作用力 7 2-1-4混煉射料的流變性質 7 2-2射出成形 10 2-2-1短射(Short Shot) 10 2-2-2融合線(Weld Line) 11 2-2-3破裂和殘留應力 11 2-2-4收縮孔 12 2-2-5頂出缺陷 12 2-2-6延遲破壞 13 2-2-7粉膠分離現象 13 2-2-7-1產生原因 14 2-2-7-2模具設計對粉膠分離的影響 15 2-2-7-3粉末粒徑對粉膠分離的影響 16 2-2-7-4改善粉膠分離的方法 17 2-3脫脂 17 2-3-1溶劑脫脂 18 2-3-1-1裂縫 19 2-3-1-2變形和崩塌 20 2-3-2熱脫脂 20 2-3-2-1破裂 21 2-3-2-2起泡 21 2-3-2-3崩塌 21 2-3-2-4脫皮 21 2-4燒結 22 2-5研究動機 22 第三章 實驗步驟 23 3-1 射料 23 3-1-1金屬粉末 23 3-1-2 黏結劑系統 24 3-2混煉 27 3-3射出成形 28 3-4 溶劑脫脂 28 3-5熱脫脂與燒結 33 3-6 生胚抗彎強度(Bending Strength) 34 3-7 溶劑脫脂時的膨脹量 35 3-8接觸角 36 3-9毛細力 36 3-10 測試儀器 38 第四章 結果與討論 39 4-1鐵粉與不銹鋼粉的表面性質 39 4-2射出成形對蠟痕的影響 45 4-2-1射出溫度對蠟痕的影響 45 4-2-2射出速度對蠟痕的影響 47 4-2-3模子溫度對蠟痕的影響 47 4-2-4保壓壓力對蠟痕的影響 48 4-2-5最佳化射出參數對蠟痕的影響 49 4-3黏結劑對蠟痕的影響 51 4-3-1總黏結劑的含量對蠟痕的影響 51 4-3-2不同骨架黏結劑對蠟痕的影響 52 4-3-3不同骨架黏結劑含量對蠟痕的影響 54 4-3-4 LPDE、PP(3554)和Fusabond黏結劑系統的比較 55 4-3-5用熱重損失討論不同骨架黏結劑系統粉膠分離現象 57 4-3-6不同黏結劑對金屬粉末的潤濕性質 60 4-3-6-1潤濕角實驗 60 4-3-6-2毛細力實驗 62 4-3-7不同骨架黏結劑系統的溶劑脫脂行為 64 4-4不同偶合劑對蠟痕的影響 67 4-4-1 PMMA對蠟痕的影響 67 4-4-2 PBMA對蠟痕的影響 68 4-4-3 EVA對蠟痕的影響 70 4-4-4 Exxelor對蠟痕的影響 72 4-4-5 1209AC對蠟痕的影響 73 4-4-6 油對蠟痕的影響 74 4-5 316L不銹鋼粉末蠟痕之研究 75 4-5-1不同骨架黏結劑對316L不銹鋼粉蠟痕的影響 75 4-5-2改善PP(3554)與316L不銹鋼粉末的混煉問題 76 4-5-3改善Fusabond與316L不銹鋼粉末的混煉問題 77 第五章 結論 83 第六章 未來工作 85 參考文獻 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 缺陷 | zh_TW |
| dc.subject | 金屬射出成形 | zh_TW |
| dc.subject | 粉膠分離 | zh_TW |
| dc.subject | 蠟痕 | zh_TW |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 偶合劑 | zh_TW |
| dc.subject | powder-binder separation | en |
| dc.subject | defect | en |
| dc.subject | coupling agents | en |
| dc.subject | contact angle | en |
| dc.subject | metal injection molding | en |
| dc.subject | gate mark | en |
| dc.title | 金屬射出成形製程參數與黏結劑設計對蠟痕的影響 | zh_TW |
| dc.title | Effects of Molding Parameter and Binder Design on Gate Mark of MIM Components | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許貫中,廖文彬 | |
| dc.subject.keyword | 金屬射出成形,粉膠分離,蠟痕,接觸角,偶合劑,缺陷, | zh_TW |
| dc.subject.keyword | metal injection molding,powder-binder separation,gate mark,contact angle,coupling agents,defect, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
