Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏
dc.contributor.authorMeng-Chi Hsiehen
dc.contributor.author謝孟錡zh_TW
dc.date.accessioned2021-06-13T00:23:35Z-
dc.date.available2010-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation[1] Jianming, Electromagnetic Analysis and Design in Magnetic Resonance
Imaging: CRC Press, 1999.
[2] 吳億澤, Design and Fabrication of Micro-scaled Spiral Surface RF coils for
3T MRI. Taipei: National Taiwan University, 2005.
[3] M. L. Joel Mispelter, Andre Briquet, NMR PROBEHEADS for biophysical and
biomedical experiment: ICP, 2006.
[4] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. M. Mueller,
'The NMR phased array,' Magn Reson Med, vol. 16, pp. 192-225, Nov 1990.
[5] D. M.Pozar, 'Microwave Engineering.'
[6] J. Pfeuffer, H. Merkle, M. Beyerlein, T. Steudel, and N. K. Logothetis,
'Anatomical and functional MR imaging in the macaque monkey using a
vertical large-bore 7 Tesla setup,' Magnetic Resonance Imaging, vol. 22, pp.
1343-1359, Dec 2004.
[7] P. Glover and P. Mansfield, 'Limits to magnetic resonance microscopy,'
Reports on Progress in Physics, vol. 65, pp. 1489-1511, Oct 2002.
[8] H. Benveniste and S. Blackband, 'MR microscopy and high resolution'small
animal MRI: applications in neuroscience research,' Progress in Neurobiology,
vol. 67, pp. 393-420, Aug 2002.
[9] B. McDaniel, H. X. Sheng, D. S. Warner, L. W. Hedlund, and H. Benveniste,
'Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a
model of neurodegeneration: A 5-week longitudinal micro-MRI study,'
Neuroimage, vol. 14, pp. 1244-1255, Dec 2001.
[10] A. Van der Linden, M. Verhoye, J. Van Audekerke, R. Peeters, M. Eens, S. W.
Newman, T. Smulders, J. Balthazart, and T. J. DeVoogd, 'Non invasive in vivo
anatomical studies of the oscine brain by high resolution MRI microscopy,'
Journal of Neuroscience Methods, vol. 81, pp. 45-52, Jun 1 1998.
[11] J. P. Munasinghe, J. A. Tyler, T. A. Carpenter, and L. D. Hall,
'High-Resolution Mr-Imaging of Joint Degeneration in the Knee of the Str/Ort
Mouse,' Magnetic Resonance Imaging, vol. 13, pp. 421-428, 1995.
[12] N. R. Aiken, W. R. Galey, and J. D. Satterlee, 'A Peroxidative Model of
Human Erythrocyte Intracellular Ca2+ Changes with in-Vivo Cell Aging -
Measurement by F-19-Nmr Spectroscopy,' Biochimica Et Biophysica
Acta-Molecular Basis of Disease, vol. 1270, pp. 52-57, Jan 25 1995.
[13] P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy.
Oxford: Clarendon Press, 1991.
56
[14] G. A. Johnson, M. B. Thompson, and B. P. Drayer, '3-Dimensional Mri
Microscopy of the Normal Rat-Brain,' Magnetic Resonance in Medicine, vol.
4, pp. 351-365, Apr 1987.
[15] G. Hansen, L. E. Crooks, P. Davis, J. Degroot, R. Herfkens, A. R. Margulis, C.
Gooding, L. Kaufman, J. Hoenninger, M. Arakawa, R. Mcree, and J. Watts,
'Invivo Imaging of the Rat Anatomy with Nuclear Magnetic-Resonance,'
Radiology, vol. 136, pp. 695-700, 1980.
[16] J. M. Wang, A. Reykowski, and J. Dickas, 'Calculation of the Signal-to-Noise
Ratio for Simple Surface Coils and Arrays of Coils,' Ieee Transactions on
Biomedical Engineering, vol. 42, pp. 908-917, Sep 1995.
[17] B. L. Sorgenfrei and W. A. Edelstein, 'Optimizing MRI signal-to-noise ratio
for quadrature unmatched RF coils: Two preamplifiers are better than one,'
Magnetic Resonance in Medicine, vol. 36, pp. 104-110, Jul 1996.
[18] L. L. Arnder, M. D. Shattuck, and R. D. Black, 'Signal-to-noise ratio
comparison between surface coils and implanted coils,' Magnetic Resonance
in Medicine, vol. 35, pp. 727-733, May 1996.
[19] S. E. Hurlston, G. P. Cofer, and G. A. Johnson, 'Optimized radiofrequency
coils for increased signal-to-noise ratio in magnetic resonance microscopy,'
International Journal of Imaging Systems and Technology, vol. 8, pp. 277-284,
1997.
[20] M. D. Harpen, 'Sample Noise with Circular Surface Coils,' Medical Physics,
vol. 14, pp. 616-618, Jul-Aug 1987.
[21] S. Z. Li, Q. X. Yang, and M. B. Smith, 'Rf Coil Optimization - Evaluation of
B-1 Field Homogeneity Using Field Histograms and Finite-Element
Calculations,' Magnetic Resonance Imaging, vol. 12, pp. 1079-1087, 1994.
[22] L. Fakri-Bouchet, C. Lapray, and A. Briguet, 'Measurements of the
radiofrequency field in magnetic resonance coils,' Measurement Science &
Technology, vol. 9, pp. 1641-1646, Sep 1998.
[23] N. Logothetis, H. Merkle, M. Augath, T. Trinath, and K. Ugurbil, 'Ultra
high-resolution fMRI in monkeys with implanted RF coils,' Neuron, vol. 35,
pp. 227-42, Jul 18 2002.
[24] X. Y. Song, W. D. Wang, B. D. Zhang, M. Lei, and S. L. Bao, 'Digitalization
decoupling method and its application to the phased array in MRI,' Progress
in Natural Science, vol. 13, pp. 683-689, Sep 2003.
[25] E. A. Barberi, J. S. Gati, B. K. Rutt, and R. S. Menon, 'A
transmit-only/receive-only (TORO) RF system for high-field MRI/MRS
applications,' Magnetic Resonance in Medicine, vol. 43, pp. 284-289, Feb
2000.
[26] G. C. Wiggins, C. Triantafyllou, A. Potthast, A. Reykowski, M. Nittka, and L.
L. Wald, “32-Channel 3 tesla receive-only phased-array head coil with soccer-ball element geometry,” Magnetic Resonance in Medicine, vol. 56, pp. 2 16-223, Jul 2006.
[27] B. R. Mario F. Wullimann, Heinrich Recichert, Neuroanatomy of the Zebrafish Brain, 1996.
[28] H. J. Yost, “Left-right development from embryos to brains,” Developmental Genetics, vol. 23, pp. 159-163, 1998.
[29] S. K. A. Alia, D. Gross, D. Marek, T. Oerther, M. Sacher, H. P. Spaink, and H. J. de Groot, “Magnetic Resonance Microimaging of Adult Zebrafish Brain Using Cryoprobe Technology,” in Intl. Soc. Mag. Reson. Med. 15 Berlin, 2007.
[30] T. M. Shepherd, E. Ozarslan, M. A. King, T. H. Mareci, and S. J. Blackband, “Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus,” Neuroimage, vol. 32, pp. 1499-509, Oct 1 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28804-
dc.description.abstract磁振造影為一非侵入式的影像系統,在造影技術上的改善主要著重在加速造
影時間以及提高影像的解析度。雖然在臨床上,加速造影較影像解析度來的重
要;但是,高空間解析度的影像在生物研究和其他研究的應用是相當重要的一
環。目前有許多研究在探討如何提升線圈的靈敏度使得在高空間解析度的影像有
良好的訊雜比;其中,將線圈微小化可以達到我們需要的目標。
本研究會從基本的磁共振訊雜比理論來說明在提高空間解析度下,磁共振訊
號的損失。並且利用數值模擬分析來了解在線圈尺寸縮小下,射頻磁場的分佈變
化。相較過去的準靜磁場模擬方法,我們使用有限元素法,建立一近於真實的三
維模型並將其調諧和阻抗匹配至3T下的拉莫頻率和50 ohm來觀察射頻磁場的分
佈和最佳化相位陣列線圈去耦合。撘配電路設計使激發和接收分開達到高品質的
磁共振影像。
斑馬魚為一重要的神經科學研究的模型,而利用光學方法來造影斑馬魚都在
早期胚胎發育的時期,由於成魚是不透明。本論文利用自行架設的非侵入式之磁
共振顯微影像系統取得斑馬魚(zebrafish, Danio)成魚魚腦和鼠腦海馬迴
(hippocampus)兩種不同的小動物高解析度磁振造影;相較於現有的商用線圈做比
較確實在訊雜比和影像對比有明顯的提升,約3~4倍。証明了利用自製的射頻線
圈組成的磁共振影像系統確實能夠獲得高品質的小動物之高解析度影像。
zh_TW
dc.description.abstractMagnetic resonance image (MRI) is a non-invasive imaging system. The two
main streams of technique improvement are decreasing scan time and increasing
spatial resolution. In clinical, temporal resolution is more important than spatial
resolution. But high spatial resolution MR imaging might become powerful tool for
biological studies and other applications. At the present time, there are many
researches have been done to increase the sensitivity of the radiofrequency (RF) coils
to increase signal-to-noise ratio (SNR) with higher spatial and temporal resolution.
Among all, decreasing coil size seems to be the suitable way for magnetic resonance
microscopy (MRM).
In this thesis, we will probe into the effect between high spatial resolution and
the loss of magnetic resonance signal from the basic MR theory. We also simulate the
magnetic field distribution of RF coil by downsizing coil size using numerical
analysis. Instead of conventional quasi-static magnetic field simulation, we construct
a 3D model approached real structure and tune/match to 125.3 MHz/ 50 ohm to obtain
magnetic filed distribution and optimize decouple of micro-fabricated phase array coil.
iii
Then we match up circuit design and transmit-only and receive-only (TORO) mode to
obtain high quality MR image.
Zebrafish is an important model of neuroscience development and optical studies
in zebrafish are restricted to very early developmental stages due to the opacity of the
juvenile and adult stages. In the study, we used non-invasive MRI system obtain two
different kinds of small animal high resolution MR images: zebrafish brain and
hippocampus of rat. Compared with commercial micro volume coil, the SNR and
CNR (contrast-to-noise) can be improved clearly by using our RF coils, about 3~4
times. It can be validated that our RF coils indeed can obtain high quality small
animal magnetic resonance microscope.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:23:35Z (GMT). No. of bitstreams: 1
ntu-96-R94921052-1.pdf: 2350743 bytes, checksum: fde5f125975bc56939aed613c35229ce (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要.......................................................................................................................i
Abstract.........................................................................................................................ii
圖目錄...........................................................................................................................iv
表目錄..........................................................................................................................vii
第一章 緒論
1.1 研究背景.…………………………………………………………. 1
1.2 研究動機………………………………………………………….. 2
1.3 論文架構………………………………………………………….. 2
第二章 磁振造影之射頻線圈理論
2.1 磁振造影硬體介紹…………………………………………………. 4
2.1.1 主磁場……………………………………………………… 4
2.1.2 梯度線圈…………………………………………………… 5
2.1.3 射頻線圈…………………………………………………… 5
2.2 相位陣列線圈................................................................................... 6
2.2.1 互感........................................................................................ 7
2.2.2 重疊去耦合............................................................................ 7
2.2.3 低輸入阻抗放大器去耦合.................................................... 8
2.2 射頻線圈的性質............................................................................... 9
2.2.1 等效電路................................................................................ 9
2.2.2 調諧........................................................................................ 10
2.2.3 阻抗匹配................................................................................ 11
2.4 激發與接收分開模式......................................................................... 12
2.5 磁共振顯微影像................................................................................. 13
2.6 磁振造影之訊雜比........................................................................... 14
2.6.1 磁共振訊號及雜訊................................................................ 14
2.6.2 總訊雜比................................................................................ 15
2.6.3 高解析度影像之困難............................................................ 15
第三章 數值分析及射頻線圈製作
3.1 單圈射頻表面線圈之電磁分析........................................................ 17
3.2 馬鞍線圈之電磁分析........................................................................ 19
3.3 微型相位陣列線圈之電磁分析........................................................ 20
3.3.1 相位陣列線圈之電磁分析................................................... 20
3.3.2 線圈中心距離與穿透係數的關係....................................... 21
3.3.3 穿透係數與磁場分佈的關係............................................... 27
3.4 射頻線圈的電路設計........................................................................ 29
3.4.1 馬鞍線圈之電路設計........................................................... 29
3.4.2 微型表面線圈之電路設計................................................... 30
3.4.3 微型相位陣列線圈之電路設計........................................... 30
3.5 射頻線圈的製作................................................................................ 31
3.5.1 馬鞍線圈製作....................................................................... 31
3.5.2 微型表面線圈製作............................................................... 32
3.5.3 微型相位陣列線圈製作....................................................... 33
3.5.4 低輸入阻抗前置放大器....................................................... 34
3.6 射頻線圈的量測................................................................................ 35
3.7 高解析度磁共振影像之實驗架設.................................................... 37
第四章 結果
4.1 小動物之高解析度磁共振影像........................................................ 39
4.1.1 斑馬魚成魚之腦部解剖影像.................................................. 39
4.1.2 實驗設計................................................................................. 41
4.1.3 實驗結果................................................................................. 41
4.1.4 體線圈之斑馬魚腦部影像..................................................... 43
4.2 鼠腦的海馬迴之高解析度解剖影像................................................ 45
4.2.1 實驗設計................................................................................. 45
4.2.2 實驗結果................................................................................. 46
4.3 討論.....................................................................................................49
第五章 討論、結論及未來工作
5.1 討論.................................................................................................... 52
5.1.1 射頻線圈...............................................................................53
5.1.2 實驗設計...............................................................................53
5.1 結論.................................................................................................... 53
5.2 未來工作............................................................................................ 54
5.2.1 硬體改良..................................................................................54
5.2.2 應用..........................................................................................55
參考文獻....................................................................................................56
dc.language.isozh-TW
dc.subject磁共振顯微影像、射頻線圈、HFSS、斑馬魚腦zh_TW
dc.subjectmagnetic resonance microscopeen
dc.subject zebrafish brainen
dc.subject HFSSen
dc.subject RF coilen
dc.title微型磁振造影射頻線圈之研究與應用zh_TW
dc.titleThe Design and Application of Micro RF Coilen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張恕,林慶波,呂學士,盧信嘉
dc.subject.keyword磁共振顯微影像、射頻線圈、HFSS、斑馬魚腦,zh_TW
dc.subject.keywordmagnetic resonance microscope, RF coil, HFSS, zebrafish brain,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved