請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28781完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允立 | |
| dc.contributor.author | Kai-Wen Cheng | en |
| dc.contributor.author | 鄭凱文 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:22:26Z | - |
| dc.date.available | 2010-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | [1] Jr. N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light emission from
Ga(As1-xPx) junctions” Appl. Phys. Lett. 1, pp. 82, (1962) [2] Lumileds company website: http://www.lumileds.com [3] LEDs magazine website: http://ledsmagazine.com/ [4] Stephen Halperin, “Guidelines for Static Control Management” (1990) [5] T. Inoue, “Light emitting device”, Japanese Patent H11-040848 (1999) [6] 林清涼、戴念祖,「啟發性物理學—電磁學」,(2004) [7] http://www.midwestesd.org/aboutesd.html [8] D. D. Ward, “Electrostatic discharge,” IEE Seminar on EMC Design, March, pp.4/1-4/8, (1999) [9] M. N. O. Sadiku and C. M. Akujuobi, “Electrostatic discharge (ESD)” IEEE Potentials, 22, Dec. 2003-Jan. 2004, pp.39-41 [10] 二澤正行 原編、羅國杰 編譯,「圖解靜電管理入門」,(2005) [11] http://www.midwestesd.org/aboutesd.html [12] “Fundamentals of Electrostatic Discharge”, ESD Association, Rome, NY, (2000) [13] R. P. Clayton, Introduction to Electromagnetic Compatibility, chapter12 and 13., Published by John Wiley & Sons, Inc., (1992) [14] Voldman, “ESD Physics and Devices”, Wiley, (2004) [15] 邱碧秀,「電子陶瓷材料」,(2001) [16] Takeshi Ito et al, “ZnO thin-film varistors and method of making the same”, U.S. patent, Patent No. US 005699035, (1997) [17] Wen-Huang Liu et al, “Light emitter with a voltage dependent resistor layer”, U.S. patent, Patent No. US 7095765, (2006) [18] W. G. Carison, T. K. Gupta, “Improved varistor nonlinearity via donor impurity doping”, J. Appl. Phys. 53, No. 8, (1982) [19] Mattias Elfwing, Eva Olsson, “Electron holography study of active interfaces in zinc oxide varistor materials”, J. Appl. Phys., 92, No. 9, (2002) [20] M. Matsuoka, “Nonlinear Properities of Zinc Oxide Ceramics”, Jpn. J. Appl. Phys., 10, No. 6, 736-46, (1971) [21] L. M. Levinson, H. R. Philipp, “The physics of metal oxide varistors”, J. Appl. Phys., 46, No. 3, (1975) [22] L. M. Levinson, H. R. Philipp, “High-frequency and high-current studies of metal oxide varistors”, J. Appl. Phys., 47, No. 7, (1976) [23] G. D. Mahan, Lionel M. Levinson, and H. R. Philipp, “Theory of conduction in ZnO varistors”, J. Appl. Phys., 54, No. 4, (1979) [24] J. Bernasconi, H.P. Klein, B. Knecht and S. Strassler, “Investigation of various models for metal oxide varistors”, J. Electron. Mater. 15 (1976) [25] G. E. Pike., “Electronic properties of ZnO varistors: A New Model”, Materials Research Society Symposia Proceedings, v 5, (1982) [26] T. K. Gupta, W. G. Carlson, “Barrier voltage and its effect on stability of ZnO varistor”, J. Appl. Phys., 53, No. 11, (1982) [27] Oh Myung Hwan, Kim Myung Sik, Koo Ja Yoon, “Analysis on the frequency characteristics for conduction mechanism in zinc oxide varistors”, Proc 3rd Int Conf Conduct Breakdown Solid Dielectr, (1989) [28] K. Eda, A. Iga, M. Matsuoka “Degradation mechanism of non-ohmic zinc oxide ceramics”, J. Appl. Phys., 51, No. 5, (1980) [29] Kazuo Eda, “Conduction mechanism of non-Ohmic zinc oxide ceramics”, J. Appl. Phys., 49, No. 5, (1978) [30] S. M. Jejurikar et al, “Structural, morphologyical, and electrical characterization of heteroepitaxial ZnO thin films deposited on Si(100) by pulsed laser deposition: Effect of annealing (800℃) in air”, J.Appl. Phys., 99, 014907 (2006) [31] H. Y. Kim, J. H. Kim, M. O. Park, S. Im, “Photoelectric, stoichiometric and structural properties of n-ZnO film on p-Si”, Thin Solid Films 398-399 (2001) [32] Sh. U. Yuldashev, “Electrical and optical properties of ZnO thin films grown on Si substrates”, J. Appl. Phys. 100, 013704 (2006) [33] F. Chaabouni, M. Abaab, B. Rezig, “Characterization of n-ZnO/p-Si films grown by magnetron sputtering”, Superlattices and Microstructures 39, 171–178 (2006) [34] Byung-Teak Lee et al, “Growth and characterization of device quality ZnO on Si(111) and c-sapphire using a conventional rf magnetron sputtering”, J. Electroceram 17:305–310 (2006) [35] Il-Soo Kim, Sang-Hun Jeong, Sang Sub Kim and Byung-Teak Lee, “Magnetron sputtering growth and characterization of high quality single crystal ZnO thin films on sapphire substrates”, Semicond. Sci. Technol. 19 L29–L31 (2004) [36] A. Ashida, H. Ohta, T. Nagata, Y. Nakano, N. Fujimura and T. Ito, “Optical propagation loss of ZnO films grown on sapphire”, J. Appl. Phys., 95, No. 4, (2004) [37] Katsutoshi Fujiwara, Akira Ishii, “Theoretical investigation on the structural properties of ZnO grown on sapphire”, e-J. Surf. Sci. Nanotech. 4, 544-547 (2006) [38] S. Tüzemen et al, “An investigation of control mechanisms of the excitonic behavior in reactively sputtered ZnO on (0001) Al2O3”, J. Appl. Phys. 100, 103513 (2006) [39] J. W. Seong et al, “Effect of low substrate deposition temperature on the optical and electrical properties of Al2O3 doped ZnO films fabricated by ion beam sputter deposition”, J. Vac. Sci. Technol. A, 22, No. 4, JulÕ (2004) [40] Bang-Tai Tang, Qing-Xuan Yu, Hsin-Ying Lee, Ching-Ting Lee, “Ohmic performance of ZnO and ITO/ZnO contacted with n-type GaN layer”, Materials Science and Engineering B 82, 259–261 (2001) [41] F. Chaabouni, M. Abaab, B. Rezig, “Effect of the substrate temperature on the properties of ZnO films grown by RF magnetron sputtering”, Materials Science and Engineering B 109 ,236–240 (2004) [42] D.K. Maurya, “Effects of post-thermal treatment on the properties of rf reactive sputtered ITO films”, Microelectronics Journal 38 , 76–79 (2007) [43] M. K. Ryu et al, “Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique”, J. Appl. Phys., 92, No. 1, (2002) [44] Day-Shan LIU, Chun-Hsing LIN, Bing-Wen HUANG and Chun-Ching WU, “Electrical, Optical and Material Properties of ZnO-Doped Indium–Tin Oxide Films Prepared Using Radio Frequency Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., 45, No. 4B (2006) [45] S. M. Jejurikar et al, “Structural, morphologyical, and electrical characterization of heteroepitaxial ZnO thin films deposited on Si(100) by pulsed laser deposition: Effect of annealing (800℃) in air”, J.Appl. Phys., 99, 014907 (2006) [46] T.L. Tansley, S. J. T. Owen, “Conductivity of Si-ZnO p-n and n-n heterojunctions”, J. Appl. Phys. 55 (2) (1984) [47] R. L. Anderson, “Germanium-Gallium Arsenide Heterojunctions”, IBM J. Res. 283 (1960) [48] Mina Jung, et al, “Investigation of the annealing effects on the structural and optical properties of sputtered ZnO thin films”, J. Crystal Growth , 283 (2005). [49] Vinay Gupta, Abhai Mansingh, “Influence of post-deposition annealing on the structural and optical properties of sputtered zinc oxide film”, J. Appl. Phys. 80 (2) (1996) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28781 | - |
| dc.description.abstract | 近年來,氮化鎵基LED在發光效率上有很大的進展,不過在靜電防護上卻還有很大的改善空間。一般LED靜電防護的作法有兩種:第一種是將LED與兩個背對背的齊納二極體並聯;第二種是利用LED只在逆偏時有靜電防護的問題,將LED與一個二極體反向並聯來達到靜電防護的功效。第一種方法的缺點是必須還要另外製作齊納二極體、第二種方法的缺點是額外製作的二極體會佔據LED晶圓的發光面積,使得成本提高。因為薄膜製程比起傳統變阻器用陶瓷製程相對簡單許多,而且鍍膜製程容易整合至半導體製程中,所以本論文基於此原因,試著研究薄膜式變阻器。
在研究薄膜變阻器的過程中,發現僅鍍上氧化鋅薄膜於藍寶石基板上似乎沒有發現電阻隨電壓呈現非線性變化的傾向。本論文研究了(1)氧化鋅薄膜沉積在藍寶石基板、(2) 矽薄膜沉積在藍寶石基板、(3)Si/ZnO沉積在藍寶石基板等三種結構。研究中發現由Si/ZnO的薄膜搭配組合,再經過適當地熱退火處理,可以呈現出類似於變阻器的效果。若比較經熱退火1100℃秒之後的樣品的電流-電壓特性曲線與傳統300μm × 300μm的LED晶片於20mA的電流下的電性。發現其在V<0時,樣品的電流約在-5V時導通;而在V>0時,樣品的電流約在5V時導通;與LED相比,此樣品在大電壓時呈現小電阻,而在小電壓時呈現大電阻。若將此樣品與LED電路並聯,似乎有機會能夠提供另一條電流路徑,提供了LED的靜電防護機制可能性。在做完透光率量測後,發現此薄膜變阻器在經過熱退火後,透光率在紅光波段約增加了3倍。若將此薄膜變阻器並聯製作在LED上,看起來不僅有製程簡單的便利性,而且由電流-電壓特性的比較中發現,在靜電放電防護上似乎會有不錯的效果。 | zh_TW |
| dc.description.abstract | In recent years, there is a large improvement on the luminous efficiency of LEDs. However, there are some problems in LED ESD protection. Generally, there are two technologies to do the LED ESD protection. One is parallel LED with the head-to-head Zener diodes, the other is parallel LED with a reverse connected diode which is due to the property that LEDs only have troubles in the reverse-bias operation. The disadvantage of the first technology is needed extra works to fabricate the Zener diodes. The disadvantage of the second technology is that the extra fabricated diodes will occupy some emitting areas on the LED wafer. So we want to investigate thin film varistor, since thin film process is simpler than traditional ceramic process, and it is easy to integrate into semiconductor process.
In the experiment, we sputter Si/ZnO on sapphire substrate, and do the I-V measurement, optical transmittance measurement and post-annealing process. It is found that the conductance and the optical transmittance of thin film become higher after doing the post-annealing process. It is note that the Si/ZnO thin film demonstrate the “varistor-like” characteristic after the post annealing process at 1100℃ for 30 secs in air condition. The optical transmittance of thin film will increase about three times after the post annealing process. Comparing the I-V characteristic of the sample on which the post annealing is carried out with that of regular LED chip at 20mA, it is found that the sample will turn on at ±5V. Relatively, the samples have low resistance at high voltage, and they have high resistance at low voltage. It seems to have “varistor-like” behavior and it provides another current path for electro-static discharge. It is a possible method to do the LED ESD protection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:22:26Z (GMT). No. of bitstreams: 1 ntu-96-R94941054-1.pdf: 2585764 bytes, checksum: 864990ae07ff33f115de52862271b1cb (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝II 中文摘要III 英文摘要IV 圖目綠V 目綠VIII 表目綠XI 第一章 緒論 1 1.1 簡介 1 1.2 論文大綱 4 第二章 靜電放電簡介與規範 6 2.1 歷史背景 6 2.1.1 東方觀點 6 2.1.2 西方觀點 7 2.2 靜電的基本觀念 8 2.2.1 摩擦帶電 8 2.2.2 誘導帶電 9 2.2.3 分極狀態 10 2.3 工業測試標準 12 2.3.1 人體放電模式 (Human-Body Model, HBM) 12 2.3.1.1 LED順偏操作下對ESD的忍受能力 13 2.3.1.2 LED逆偏操作下對ESD的忍受能力 14 2.3.2 機器放電模式 (Machine Model, MM) 14 2.3.3 元件充電模式 (Charged-Device Model, CDM) 15 2.3.4 電場感應模式 (Field-Induced Model, FIM) 15 第三章 薄膜變阻器 17 3.1設計理念 17 3.2氧化鋅變阻器 19 3.2.1 簡介 19 3.2.2 傳導機制 21 3.2.2.1 空間電荷限制電流理論 21 3.2.2.2 晶粒界面層之穿隧過程 22 3.2.2.3 雙重蕭特基能障 24 3.2.2.4 夾有晶粒界面層之雙重蕭特基能障 26 第四章 實驗方法與步驟 30 4.1 實驗動機 30 4.2 薄膜變阻器製作 30 4.3 薄膜變阻器特性量測 34 4.3.1電流-電壓特性 34 4.3.2 光學特性 36 4.4 實驗流程整理 36 第五章 實驗結果與分析 38 5.1氧化鋅薄膜變阻器 38 5.2 Si/ZnO結構的薄膜變阻器 40 5.2.1設計理念動機 40 5.2.2 Si/ZnO薄膜變阻器實驗 41 5.3薄膜微結構分析 57 5.4 Si厚度對Si/ZnO薄膜變阻器的影響 58 5.5 光學性質量測 60 5.6薄膜變阻器應用於LED的可行性 62 第六章 結論與未來展望 63 6.1結論 63 6.2未來展望 64 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靜電防護 | zh_TW |
| dc.subject | 變阻器 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 薄膜變阻器 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | ESD | en |
| dc.subject | LED | en |
| dc.subject | varistor | en |
| dc.subject | ZnO | en |
| dc.subject | thin film varistor | en |
| dc.title | 應用於發光二極體抗靜電防護之薄膜變阻器研究 | zh_TW |
| dc.title | Investigation of thin film varistor for GaN-based light-emitting diode electro static discharge protection application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,黃鼎偉 | |
| dc.subject.keyword | 變阻器,靜電防護,氧化鋅,薄膜變阻器,發光二極體, | zh_TW |
| dc.subject.keyword | LED,varistor,ESD,thin film varistor,ZnO, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
