請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張上鎮(Shang-Tzen Chang) | |
| dc.contributor.author | Shaw-Shien Lin | en |
| dc.contributor.author | 林修賢 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:22:20Z | - |
| dc.date.available | 2007-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 王松永(1983)商用木材。林產事業協會。pp 103-104。
王升陽、徐麗芬、楊寧蓀(2003)傳統與科技結合-藥用與保健植物新發展。科學發展 364:50-55。 李文昭、劉正字(1996a)農林廢料製造木材膠合劑之研究(IV):酚-相思樹樹皮抽出物-甲醛共聚合膠合劑之應用。林產工業15(2):251-270。 李文昭、劉正字(1996b)農林廢料製造木材膠合劑之研究(V):酚-相思樹樹皮抽出物-甲醛共聚合膠合劑之應用。林產工業15(4):627-639。 李國雄、王惠康(1995)喜樹鹼的化學及癌症構效關係研究之最新進展。化學 53(1):64-75。 何振隆(2004)四種桉樹葉精油組成及生物活性之探討。國立台灣大學森林學研究所碩士論文。166頁。 吳志鴻(2004)相思樹心材具抗氧化及抗發炎成分之分析與鑑定。國立台灣大學森林學研究所博士論文。191頁。 吳金村、黃義雄(1985)相思樹樹皮抽出物之膠合性質(第二報):強化處理對其膠合性質之改良。林產工業4(1):23-30。 林仁混、蕭水銀(1996)紫杉醇-一種新問世的抗癌藥物。當代醫學 23(10):43-48。 陳正和(2002)台灣最普遍的森林喬木之ㄧ-相思樹。台灣林業28(6):59-61。 陳怡穎(2003)台灣土肉桂葉精油之組成與抗氧化性。國立台灣大學食品科技研究所碩士論文。142頁。 黃義雄、吳金村(1985)相思樹樹皮抽出物之膠合性質(第一報):萃取條件及黏度降低處理對膠合性之影響。國立中興大學農學院實驗林研究報告6:181-191。 黃志煜(2006)相思樹花之抗氧化活性成分分離與鑑定。國立台灣大學森林學研究所碩士論文。91頁。 童鈺棠、吳志鴻、張上鎮(2005)相思樹枝條抽出物抗氧化活性之初探。中華林學季刊38(3):367-375。 劉棠瑞(1960)台灣木本植物圖誌第一冊。國立台灣大學農業學院叢書,第8種;林學叢書,第1種,台北。P. 484。 蔡新聲、陳忠川、李鎮宇、郭昭麟、羅淑芳(2003)台灣珍稀藥用植物。科學發展 364:42-49。 應紹舜(1987)台灣高等植物彩色圖誌第二卷。p.118。 Adewust, S. R., O. S. Falade, and C. Harwood (2003) Chemical composition of Acacia colei and Acacia tumida seeds-potential food source in the semi-arid tropics. Food Chem. 80: 187-195. Ajith, T. A. and K. K. Janardhanan (2002) Antioxidant and antihepatotoxic activities of Phellinus rimosus (Berk) Pilat. J. Ethnopharmacol. 81: 387-391. Angelo, A. J. S. (1996) Lipid oxidation on foods. Crit. Rev. Food Sci. Nutr. 36: 175-224. Argolo, A. C. C., A. E. G. Sant’Ana, M. Pletsch, and L. C. B. B. Coelho (2004) Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresource Technol. 95: 229-233. Aruoma, O. I. (1994) Nutrition and health aspects of free radicals and antioxidant. Food Chem. Toxicol. 32: 671-683. Boyer, R. (1998) Concepts in Biochemistry: Amino Acid, Peptides, and Proteins. Brooks/Cole publishing Co., California. pp. 77-108. Brown, J (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implication for their antioxidant properties. Biochem. J. 330: 1173-1178. Cadenas, E. (1989) Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110. Caldwell, M. M., R. Robberecht, and S. D. Flint (1983) Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plantarum. 58: 445-450. Cerutti, P. A. (1991) Oxidant stress and carcinogenesis. Eur. J. Clin. Invest. 21: 1-11. Cerutti, P. A. (1994) Oxy-radicals and cancer. Lancet. 344: 862-863. Chang, S. T., J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang, and L. F. Shyur (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49: 3420-3423. Chu, Y. F. and R. H. Liu (2004) Novel low-density lipoprotein (LDL) oxidation model: antioxidant capacity for the inhibition of LDL oxidation. J. Agric. Food Chem. 52: 6818-6823. Chung, S. K., Y. C. Kim, Y. Takaya, K. Terashima, and M. Niwa (2004) Novel foavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. J. Agric. Food Chem. 52:4664-4668. Cooks, N. and S. Samnlan (1996) Flavonoids-Chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem. 7: 66-76. Dávalos, A., C. Gómez-Cordovés, and B. Bartolomé (2003) Commercial dietary antioxidant assayed for their antioxidant by different methodologies. J. Agric. Food Chem. 51:2512-2519. Dinis, T. C. P., V. M. C. Madeira, and L, M. Almeida (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosaliculate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161-169. Diplock, A. T., J. L. Charleux, G. Grozier-willi, F. J. Jok, C. Rice-Evans, M. Roberfroid, W. Stahl, and J Vina-Ribes (1998) Functional food science and defense against reactive oxidative species. Br. J. Nutr. 80: 77-112. Draper, H. H., S. Agarwal, D. E. V. Nelson, J. J. Wee, A. K. Ghoshal, and E. farber (1995) Effects of peroxidative stresss and age on the concentration of a deoxyguanosine-malondialdehyde adduct in rat DNA. Lipids 30: 959-961. Duh, P. D., Y. Y. Tu, and G. C. Yen (1999) Antioxidant activity of water extract of Harng Jyur ( Chrysanthemum morifolium Ramat ). Lebensm. Wiss. U. Technol. 32: 269-277. Finkel, T. and N. J. Holbrook (2000) Oxidants, oxidative stress and biology of ageing. Nature 408 (9): 239-247. Flamini, G., E. Antognoli, and I. Morelli (2001) Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 57: 559-564. Formica, J. V. and W. Regelson (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxic. 33: 1061-1080. Franke, A. A., L. J. Custer, C. M. Cerna, and K. K. Narala (1994) Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42 (9): 1905-1913. Furusawa, M., T. Ito, K. I. Nakaya, T. Tanaka, I. Ibrahim, M. Iinuma, H. Murata, Y. Inatomi, and T. Nakanishi (2003) Falvonol glycosides in two diospyros plants and their radical scavenging avtivity. Heterocycles 60 (11): 2557-2563. Gryglewski, R. J., R. Korbut, J. Robak, and J. Swies (1987) On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol. 36: 317-322. Halliwell, B. (1994) Free radicals, antioxidants and human disease: curiosity, cause, or consequence? Lancet. 344 (8924): 721-724. Halliwell, B. (1996) Ascorbic acid in the prevention and treatment of cancer. Altern. Med. Rev. 3: 174-186. Halliwell, B. (1997) Antioxidants and human diseases: a general introduction. Nutr. Rev. 55: 44-52. Halliwell, B. and J. M. C. Gutteridge (1999) Free Radicals in Biology and Medicine. Oxford, New York. 933 pp. Halliwell, B., J. M. C. Gutteridge, and C. E. Cross (1992) Free radicals, antioxidants and human disease: where are we now? J. Lab. Clin. Med. 119: 598-620. Harborne, J. B. (1988) The Flavonoids: Advances in Research Since 1980. Chapman and Hall, New York. 933 pp. Harwood, C. E. (1998) Human food potential of the seeds of some Australian dry-zone Acacia species. J. Arid. Environ. 27: 27-35. Havsteen, B. (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32: 1141-1148. Hertog, M. G., E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342: 1007-1011. Imlay, J. A. and I. Fridovich (1991) Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266: 6957-6965. Ivanova, D., D. Gerova, T. Chervenkov, and T. Yankova (2005) Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 96: 145-150. Jia, Z. S., M. C. Tang, and J. M. Wu (1999) The determination of flavonoid contents in mulberry and their scavenging effects on radicals. J. Agric. Food Chem. 64: 555-559. Johnson, I. T. (2001) Antioxidants and antitumor properties. In: Pokorny, J., N. Yanishlieva, and M. Gordon (Eds.), Antioxidants in Food. Woodhead Publishing Ltd., Cambridge. pp. 100-123. Jung, C. H., H. M. Seog, I. W. Choi, M. W. Park, and H. Y. Cho (2006) Antioxidant properties of various solvent extracts from wild ginseng leaves. Elsevier, LWT. 39: 266-274. Kähkönen, M. P., A. I. Hopia, H. J. Vuorela, J. P. Rauuha, K. Pihlaja, T. S. Kujala, and M. Heinonen (1999) Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47: 3954-3962. Kazuma, K., N. Noda, and M. Suzuki (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62: 229-237. Kirby, A. J. and R. J. Schmidt (1997) The antioxidant activity of Chinese herbs for eczema and of placebo herbs-1. J. Ethnopharmacol. 56: 103-108. Kohen, R. and A. Nyska (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidant, redox reactions, and methods for their quantification. Toxicol. Pathol. 30: 620-650. Korkina, L. G. and I. B. Afanašev (1997) Antioxidant in Disease Mechanisms and Therapy. Academic press, San Diego. pp. 151-163. Kuhn, M. A. (2003) Oxygen free radicals and antoxidant. Am. J. Nurs. 4: 58-62. Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 48: 5338-5342. Lee, T. H., F. Qiu, G. R. Waller, and C. H. Chou (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J. Nat. Prod. 63: 710-712. Lee, T. H., D. Z. Liu, F. L Hsu, W. C. Wu, and W. C. Hou (2006) Structure-activity relationships of five myricetin galloylglycosides from leaves of Acacia confusa. Botanical studies 47: 37-43. Li, R. W., S. P. Myers, D. N. Leach, G. D. Lin, and G. Leach (2003) A cross-cultural study: anti-inflammatory activity of Australian and Chinese plants. J. Ethnopharmacol. 85: 25-32. Malan, E. and P. Swartz (1995) A comparative study of the phenolic products in the heartwood of Acacia karroo from two different localities. Phytochemistry 39: 791-794. Marnett, L. J. and Burcham P. C. (1993) Endogenous DNA adducts: potentiall and paradox. Chem. Res. Toxicol. 6:771-785. Mathew, S. and T. E. Abraham (2006) In vitro antioxidant activity and scavenging effects of cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol. 44: 198-206. Mazza, G. and E. Minitai (1993) Anthocyanins in Fruits, Vegetables and Grains. CRC press, Florida. 284 pp. McCune, L. M., and T. Johns (2002) Antioxidant avtivity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of North American boreal forest. J. Ethnopharmacol. 82: 197-205. Meyer, B. N., N. R. Ferrigni, J. E. Putnam, L. B. Jascobsen, D. E. Nichols, and J. L. McLanghlin (1982) Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45: 31-34. Middleton, E. and C. Kandaswami (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 43: 1167-1179. Mitscher, L. A., H. Telikepalli, E. Mcghee, and D. M. Shankel (1996) Natural antimutagenic agents. Mutat. Res. 350 (1): 142-143. Nagao, A., M. Seki, and H. Kobayashi (1999) Inhibition of xanthine oxidase by flavonoids. Biotechnol. Biochem. 63 (10): 1787-1790. Naik, G. H., K. I. Priyadarsini, J. G. Satav, M. M. Banavalikar, D. P. Sohoni, M. K. Biyani, and H. Mohan (2003) Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry 63: 97-104. Namiki, M. (1990) Antioxidant/antimutagens in food. Crit. Rev. Food Sci. Nutr. 29:273-300. Owen, R. W., A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer 36 (10): 1235-1247. Oyaizu, M. (1986) Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771. Pietta, P. G. (2000) Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042. Popoca, J., A. Aguilar, D. Alonso, and M. L. Villarreal (1998) Cytotoxic activity of selected plants used as antitumorals in Mexican traditional medicine. J. Ethnopharmacol. 59: 173-177. Pratt, D. E., and B. J. F. Hudson (1990) Natural antioxidants not exploited commercially. In: Hudson B. J. F. (Ed.), Food Antioxidants. Elsevier, Amsterdam. pp. 171-192. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. RiceEvans (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. Rice-Evans, C., N. Miller, and G. Paganga (1997) Antioxidant properties of phenolic compounds.Trends Plant Sci. 2(4): 152-159. Richards, D. M., R. T. Dean, and W. Jessup (1988) Membrane protein are critical targets in free radical mediated cytolysis. Biochim. Biophys. Acta. 946: 281-288. Rothwell, S. E., S. E. Black, A. R. Jerrett, and M. E. Forster (2005) Cardiovascular changes and catecholamine release following anaesthesia in Chinook salmon (Oncorhynchus tshawytscha) and snapper (Pagrus auratus). Comp. Biochem. Physiol. 140A:289–298. Sakanaka, S., Y. Tachibana, and Y. Okada (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (Kakinoha-cha). Food Chem. 89: 569-575. Sala A., M. D. Recio, R. M. Giner, S. Manez, H. Tournier, G. Schinella, and J. L. Rios (2002) Anti-inflammatory and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol. 54 (3): 365-371. Seigler, D. S. (2003) Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 31: 845-873. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948. Shureiqi, I., P. Reddy, and D.E. Brenner (2000) Chemoprevention: general perspective. Crit. Rev. Oncol. Hematol. 33: 157-167. Sithisarm, P., R. Supabphol, and W. Gritsanapan (2005) Antioxidant activity of Siamese neem tree (VP1209). J. Ethnopharmacol. 99: 109-112. Sun, D. W., Z. C. Zhao, L. Y. Foo, and H. B. Wong (1991) Flavonols from Myrica esculenta bark. Chem. Ind. For. Prod. 11: 251-257. Tziveleka, L. A., A. P. Kourounakis, P. N. Kourounakis, V. Roussis, and C. Vagias (2002) Antioxidant potential of natural and synthesized polyprenylated hydroquinones. Bior. Med. Chem. 10: 935-939. Ueda, H., Y. Yamazaki, and M. Yamazaki (2004) A hydroxyl group of flavonoids affects oral anti-inflammatory activityand inhibition of systemic tumor necrosis factor-α production. Biosci. Biotechnol. Biochem. 68 (1): 119-125. Wang, S. Y., J. H. Wu, L. F. Shyur, Y. H. Kuo, and S. T. Chang (2002) Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56(5):487-492. Wu, J. H., Y. T. Tung, S. Y. Wang, L. F. Shyur, Y. H. Kuo, and S. T. Chang (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 53: 5917-5921. Wu T. S., Y. L. Leu, H. C. Hsu, L. F. Ou, C. C. Chen, J. C. Ou, and Y. C. Wu (1995) Constituents and cytotoxic principles of Nothapodytes foetida. Phytochemistry 39(2):383-385. Wu, T. S., Y. Y. Chan, Y. L. Leu, C. Y. Chern, and C. F. Chen (1996) Nothapodytines A and B from Nothapodytes foetida. Phytochemistry 42(3):907-908. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28779 | - |
| dc.description.abstract | 本研究利用DPPH(1,1-Diphenyl-2-picrylhydrazyl)自由基清除活性、超氧自由基捕捉活性、抑制脂質過氧化、還原力與金屬螯合能力等抗氧化活性試驗,評估相思樹(Acacia confusa)葉子抽出物之抗氧化活性,測定其總抗氧化能力、總酚類及總黃酮類含量,並利用管柱層析及高效能液相層析等技術分離、純化相思樹葉子抽出物,所得到之抗氧化成分則進一步運用核磁共振光譜、質譜、紅外線光譜與紫外光-可見光光譜等分析技術鑑定化合物。相思樹葉子甲醇抽出物抗氧化試驗結果顯示,甲醇抽出物之粗抽出物、乙酸乙酯可溶部及正丁醇可溶部皆具有良好的總抗氧化能力,且其總酚類含量及總黃酮類含量很高,故能有效的清除DPPH自由基、清除超氧自由基、抑制脂質過氧化及還原過氧化物質。其中,又以乙酸乙酯可溶部總酚類含量(307.8 mg of GAE/g)及總黃酮類含量(108.0 mg of QE/g)最高,故具有最強的清除DPPH自由基之效用(EC50 = 7.0 μg/mL)、抑制脂質過氧化作用(EC50 = 110.0 μg/mL)及還原過氧化物質之能力,其超氧自由基抑制作用(EC50 = 2.5 μg/mL)甚至比已知之抗氧化劑兒茶素(EC50 = 7.0 μg/mL)優異。
續以管柱層析將乙酸乙酯可溶部分離成8個次分離部後,測定其DPPH自由基清除活性、超氧自由基捕捉活性、還原力與金屬螯合能力等抗氧化活性試驗,並測定其總酚類及總黃酮類含量。試驗結果顯示Et6、Et7及Et8次分離部具有良好的DPPH自由基清除能力及超氧自由基抑制作用,並含有很高的總酚類含量及總黃酮類含量,其中,又以Et8次分離部之抗氧化活性最強。 乙酸乙酯次分離部共分離出10種化合物,包括:Gallic acid gallate、Luteolin、Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether、Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside、Myricetin 3-O-(3’’-O-galloyl)-α- rhamnopyranoside 7-methyl ether、Myricetin-3-glucopyranoside、Myricetin-3-rhamnopyranoside、Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside、Quercetin-3-rhamnopyranoside及Europetin-3-rhamnopyranoside,其中,除了Luteolin與Gallic acid methyl ester清除DPPH自由基之效果及總抗氧化能力較差外,其他化合物清除DPPH自由基之效果均較兒茶素優異。此外,相思樹葉子熱水抽出物亦具有良好的清除DPPH自由基之效果及總抗氧化能力,其總酚類含量及總黃酮類含量則分別為254.7 mg of gallic acid equivalent/g及35.8 mg of quercetin equivalent/g。综合試驗結果顯示,相思樹葉子抽出物頗具潛力開發為抗氧化之保健用品。 | zh_TW |
| dc.description.abstract | In this research, the antioxidant activity of extract from the leaves of Acacia confusa was evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical and superoxide radical scavenging assays, lipid peroxidation assay, reducing power and metal chelating ability on ferrous ions assays, and trolox equivalent antioxidant capacity (TEAC) assay. Total phenolic contents and total flavonoid contents were also evaluated. In addition, column chromatography and high performance liquid chromatography are used to separate and purify the antioxidant compounds. The chemical structure of active constituents from A. confusa leaves was identified by the analysis of nuclear magnetic resonance spectroscopy, mass spectroscopy, IR spectroscopy and UV/VIS spectroscopy. Antioxidant results of methanolic extract from A. confusa leaves revealed that the crude extract, EtOAc soluble fraction and BuOH soluble fraction have great effectiveness in TEAC assay, and they also possess high amounts of total phenolic contents and total flavonoid contents, therefore these extracts exhibited great effectiveness in scavenging DPPH free radical, scavenging superoxide radical, inhibition of lipid peroxidation and reducing peroxidated substrates. Among those extracts, EtOAc soluble fraction possesses the highest amount of total phenolic content (281.0 mg of GAE/g) and total flavonoid content (108.0 mg of QE/g), and demonstrated the great capacity of scavenging DPPH free radical (EC50 = 7.0 μg/mL), inhibition of lipid peroxidation (EC50 = 110.0 μg/mL) and reducing peroxidated substrates. Moreover, the scavenging of superoxide radical of EtOAc soluble fraction (EC50 = 2.5 μg/mL) is more effective than catechin (EC50 = 7.0 μg/mL).
EtOAc soluble fraction was then separated into 8 subfractions which were assayed by DPPH free radical and superoxide radical assays, reducing power and metal chelating on ferrous ions assays, and also determined their total phenolic contents and total flavonoid contents. Results revealed that subfractions Et6, Et7, and Et8 possessed the high amounts of total phenolic contentand total flavonoid content, they also exhibited the best antioxidant activities in DPPH free radical and superoxide radical scavenging assays. Ten compounds were isolated from EtOAc subfractions, including gallic acid gallate, luteolin, myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether, myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside, myricetin 3-O-(3’’-O-galloyl)-α- rhamnopyranoside 7-methyl ether, myricetin-3-glucopyranoside, myricetin-3- rhamnopyranoside, myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside, quercetin-3 -rhamnopyranoside and europetin-3-rhamnopyranoside. Among them, all compounds exhibited more effective capacity in scavenging DPPH free radical and TEAC than catechin except for luteolin and gallic acid methyl ether. In addition, the hot-water extract of A. confusa also have great effectiveness in DPPH and TEAC assays, and it possess high amounts of total phenolic contents (254.7 mg of GAE/g) and total flavonoid contents (35.8 mg of QE/g). Results obtained above indicated that the leaves of A. confusa have the potential to be used as a source for natural health products such as antioxidants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:22:20Z (GMT). No. of bitstreams: 1 ntu-96-R94625004-1.pdf: 1700039 bytes, checksum: 29dd52a148369ea24215ba2b8c443eec (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 頁次
目錄 ........................................................................................................................ I 表目次 .................................................................................................................... IV 圖目次 .................................................................................................................... VI 摘要 ......................................................................................................................... XII Abstract ................................................................................................................ XIV 壹、前言 ................................................................................................................ . 1 貳、文獻回顧 ........................................................................................................ 4 一、活性氧(Reactive oxygen species, ROS)與抗氧化劑 ........................... 4 (一)活性氧的來源 .................................................................................... 4 1. 外生因子 ....................................................................................... 4 2. 內生因子 ....................................................................................... 5 (二)活性氧的種類 .................................................................................... 5 1. 超氧自由基 ................................................................................... 5 2. 過氧化氫 ....................................................................................... 5 3. 氫氧自由基 ................................................................................... 6 4. 單峰氧 ........................................................................................... 6 (三)抗氧化劑的種類與功能 .................................................................... 6 1. 自由基終止型 (Free radical terminators) .................................... 7 2. 還原劑或氧原子清除劑型 (Reducing agents or oxygen scavengers) …..…………………………………………….….... 7 3. 螯合劑型 (Chelating agents) ........................................................ 7 4. 單峰氧抑制劑 (Singlet oxygen inhibitors) .................................. 7 二、植物中黃酮類化合物之功能與分布 ........................................................ 8 (一)黃酮類化合物之功能 ........................................................................ 10 (二)黃酮類化合物之分布 ........................................................................ 10 三、相思樹屬(Acacia)植物之簡介 ............................................................. 11 (一)相思樹屬植物之研究 ........................................................................ 11 (二)台灣本土相思樹之研究 .................................................................... 12 四、植物葉子抽出物的抗氧化活性 ................................................................ 12 (一)植物葉子抽出物之抗氧化活性 ........................................................ 12 (二)相思樹葉子抽出物之抗氧化活性 .................................................... 19 參、材料與方法 .................................................................................................... 20 一、試驗材料 .................................................................................................... 20 (一)相思樹葉子 ........................................................................................ 20 (二)試驗藥品與溶劑 ................................................................................ 20 二、試驗方法 .................................................................................................... 21 (一)相思樹葉子抽出物之製備 ................................................................ 21 1. 甲醇抽出物萃取 ........................................................................... 21 2. 熱水抽出物萃取 ........................................................................... 21 (二)相思樹葉子甲醇抽出物之分離與純化 ............................................ 21 1. 液相-液相分配 .............................................................................. 22 2. 薄層層析與管柱層析 ................................................................... 22 3. 高效能液相層析 ........................................................................... 23 (三)化合物結構鑑定 ................................................................................ 24 1. 核磁共振分析 ............................................................................... 24 2. 質譜鑑定 ....................................................................................... 25 3. 紅外線光譜鑑定 ........................................................................... 25 4. 紫外光-可見光光譜分析 ............................................................. . 25 (四)抗氧化活性試驗 ................................................................................ 25 1. DPPH自由基清除試驗 ................................................................. 26 2. 超氧自由基捕捉試驗 ................................................................... 26 3. 脂質過氧化試驗 ........................................................................... 27 4. 金屬螯合效果 ............................................................................... 27 5. 還原力之測定 ............................................................................... 28 6. 總抗氧化能力測定 ....................................................................... 28 (五)總酚類含量測定 ................................................................................ 28 (六)總黃酮類含量測定 ............................................................................ 29 (七)統計分析 ............................................................................................ 29 肆、結果與討論 .................................................................................................... 30 一、相思樹葉子甲醇抽出物各分離部之活性篩選 ........................................ 30 (一)清除DPPH自由基之效果 ................................................................ 30 (二)超氧自由基捕捉效果 ........................................................................ 32 (三)抑制脂質過氧化之能力 .................................................................... 33 (四)金屬螯合效果 .................................................................................... 34 (五)還原力 ................................................................................................ 35 (六)總抗氧化能力 .................................................................................... 36 (七)總酚類含量 ........................................................................................ 37 (八)總黃酮類含量 .................................................................................... 39 二、相思樹葉子甲醇抽出物乙酸乙酯可溶部之抗氧化活性 ........................ 40 (一)清除DPPH自由基之效果 ................................................................ 41 (二)超氧自由基捕捉效果 ........................................................................ 42 (三)金屬螯合效果 .................................................................................... 42 (四)還原力 ................................................................................................ 43 (五)總酚類含量 ........................................................................................ 44 (六)總黃酮類含量 .................................................................................... 45 三、相思樹葉子甲醇抽出物乙酸乙酯次分離部之抗氧化活性 .................... 46 (一)乙酸乙酯次分離部Et6-1~Et6-9清除DPPH自由基之效果 .......... 46 (二)乙酸乙酯次分離部Et7-1~Et7-20清除DPPH自由基之效果 ........ 47 (三)乙酸乙酯次分離部Et8-1~Et8-46清除DPPH自由基之效果 ........ 49 四、相思樹葉子乙酸乙酯可溶部抗氧化活性之分離與鑑定 ........................ 51 (一)Et6次分離部抗氧化活性成分之分離與鑑定 .................................. 51 (二)Et7次分離部抗氧化活性成分之分離與鑑定 .................................. 59 (三)Et8次分離部抗氧化活性成分之分離與鑑定 .................................. 77 五、化合物1~10之DPPH自由基清除試驗與總抗氧化能力 ....................... 107 六、相思樹葉子熱水抽出物之抗氧化活性 ................................................... 109 伍、結論 .................................................................................................................. 110 陸、參考文獻 .......................................................................................................... 112 表目次 頁次 表1 人蔘葉水、甲醇及乙醇抽出物之總酚類、總黃酮類、抗壞血酸、槲皮素 及山奈酚含量 Table 1. Contents of total phenolics, total flavonoids, ascorbic acid, quercetin and kaempferol in water, methanolic and ethanolic extracts of wild ginseng leaves ........................................................................................................... 14 表2 單蕊羊蹄甲葉子乙醇抽出物及各可溶部之DPPH自由基捕捉活性 Table 2. Radical scavenging activities of B. monandra leaf extracts determined by the reduction of DPPH free radical .............................................................. 15 表3 暹邏印楝各抽出物對於DPPH自由基與ABTS自由基之抗氧化活性 Table 3. Antioxidant activity of Azadirachta indica var. siamensis extracts towards the DPPH and ABTS radical ........................................................................ 17 表4 暹邏印楝葉子水抽出物及花乙醇抽出物在濃度100µg/mL下對於人肺腫瘤 細胞株丙二醛含量之作用 Table 4. Effects of leaf aqueous and flower ethanolic extracts of Azadirachta indica var. siamensis at 100 µg/mL on the percent MDA in ChaGo K-1 cell line ... 18 表5 柿樹葉子甲醇及水抽出物之抗壞血酸、總酚類及總黃酮類含量 Table 5. Content of ascorbic acid, total phenolics and total flavonoids in water and methanolic extracts of Diospyros kaki L. leaves .......................................... 18 表6. 相思樹葉子甲醇粗抽出物及其各可溶部之還原力 Table 6. Reducing power of methanolic crude extract and its fractions from Acacia confusa leaves .............................................................................................. 36 表7. 相思樹葉子甲醇粗抽出物及其各可溶部之總抗氧化能力 Table 7. Trolox equivalent antioxidant capacity (TEAC) of methanolic crude extract and its fractions from Acacia confusa leaves ............................................... 37 表8. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之還原力 Table 8. Reducing power of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa ............................................................................................ 44 表9. 相思樹葉子抽出物乙酸乙酯次分離部Et6之各次分離部收率與DPPH自 由基抑制率 Table 9. Yield and inhibition of DPPH radical of subfractions from EtOAc subfraction Et6 of the leaf extract from Acacia confusa ............................ 47 表10. 相思樹葉子抽出物乙酸乙酯次分離部Et7之各次分離部收率與DPPH 自由基抑制率 Table 10. Yield and inhibition of DPPH radical of subfractions from EtOAc subfraction Et6 of the leaf extract from Acacia confusa ............................ 48 表11. 相思樹葉子抽出物乙酸乙酯次分離部Et8之各次分離部收率與DPPH自 由基抑制率 Table 11. Inhibition of DPPH radical of subfractions from EtOAc subfraction Et8 of the leaf extract from Acacia confusa ......................................................... 50 表12. Gallic acid methyl ester之氫譜與碳譜資料 Table 12. 1H- and 13C-NMR spectral data of gallic acid methyl ester ....................... 55 表13. Luteolin之氫譜與碳譜資料 Table 13. 1H- and 13C-NMR spectral data of luteolin ................................................ 59 表14. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之氫譜與碳譜資料 Table 14. 1H- and 13C-NMR spectral data of myricetin 3-O-(3’’-O-galloyl) -α-rhamnopyranoside ................................................................................. 66 表15. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter之氫譜與 碳譜資料 Table 15. 1H- and 13C-NMR spectral data of myricetin 3-O-(3’’-O-galloyl) -α-rhamnopyranoside 7-methyl ehter ......................................................... 71 表16. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter之氫譜與 碳譜資料 Table 16. 1H- and 13C-NMR spectral data of myricetin 3-O-(2’’-O-galloyl) -α-rhamnopyranoside 7-methyl ehter ......................................................... 76 表17. Myricetin-3-glucopyranoside之氫譜與碳譜資料 Table 17. 1H- and 13C-NMR spectral data of myricetin-3-glucopyranoside .............. 82 表18. Myricetin-3-rhamnopyranosid之氫譜與碳譜資料 Table 18. 1H- and 13C-NMR spectral data of myricetin-3-rhamnopyranoside .......... 88 表19. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之氫譜與碳譜資料 Table 19. 1H- and 13C-NMR spectral data of myricetin 3-O-(2’’-O-galloyl) -α-rhamnopyranoside ................................................................................. 94 表20. Quercetin-3-rhamnopyranoside之氫譜與碳譜資料 Table 20. 1H- and 13C-NMR spectral data of quercetin-3-rhamnopyranoside ......... 100 表21. Europetin-3-rhamnopyranoside之氫譜與碳譜資料 Table 21. 1H- and 13C-NMR spectral data of europetin-3-rhamnopyranoside ......... 106 表22. 相思樹葉子乙酸乙酯可溶部化合物之DPPH自由基抑制作用與總抗氧化 能力 Table 22. Inhibition of DPPH free radical and TEAC of compounds from EtOAc fraction of Acacia confusa leaves. Using catechin as a positive control . 108 表23. 相思樹葉子熱水抽出物之抗氧化活性 Table 23. Antioxidant activities of hot-water extract from Acacia confusa leaves. Using catechin as a positive control ............................................ 109 圖目次 頁次 圖1. 各種黃酮類化合物之基本結構 Fig. 1 Structures of the major class of flavonoids ....................................................... 9 圖2. 人蔘葉不同溶劑抽出物與BHA之DPPH自由基捕捉活性 Fig. 2 DPPH radical scavenging activity of various solvent extracts of wild ginseng leaves and BHA .............................................................................................. 13 圖3. 人蔘葉不同溶劑抽出物與BHA之氫氧自由基捕捉活性 Fig. 3 Hydroxyl radical scavenging activity of water, methanolic and ethanolic extracts of wild ginseng leaves and BHA ....................................................... 13 圖4. 錫蘭肉桂葉子甲醇抽出物之DPPH自由基捕捉活性 Fig. 4 DPPH free radical scavenging activity of methanolic extract of Cinnamomum verum leaves .................................................................................................... 16 圖5. 錫蘭肉桂葉子甲醇抽出物之ABTS自由基捕捉活性 Fig. 5 ABTS free radical scavenging activity of methanolic extract of Cinnamomum verum leaves .................................................................................................... 16 圖6. 柿樹葉子甲醇及水抽出物之DPPH自由基捕捉活性 Fig. 6 DPPH free radical scavenging activity of water and methanolic extracts of Diospyros kaki L. leaves .................................................................................. 19 圖7. 相思樹葉子甲醇粗抽出物及各可溶部之DPPH自由基抑制作用 Fig. 7 Inhibition of DPPH free radical of crude extract and fractions from the methanolic extracts of Acacia confusa leaves ................................................ 31 圖8. 相思樹葉子甲醇粗抽出物及其各可溶部之超氧自由基抑制作用 Fig. 8 Inhibition of superoxide radical of methanolic crude extract and its fractions from Acacia confusa leaves ............................................................................. 33 圖9. 相思樹葉子甲醇粗抽出物及其各可溶部之脂質過氧化抑制作用 Fig. 9 Inhibition of lipid peroxidation of methanolic crude extract and its fractions from Acacia confusa leaves ............................................................................. 34 圖10. 相思樹葉子甲醇粗抽出物及其各可溶部之亞鐵離子螯合效果(濃度 2.5 mg/mL) Fig. 10 Scavenging of Fe2+ of methanolic crude extract and its fractions from Acacia confusa leaves(Concentration = 2.5 mg/mL) ................................... 35 圖11. 相思樹葉子甲醇粗抽出物及其各可溶部之總酚類含量 Fig. 11 Total phenolic contents of methanolic crude extract and its fractions from Acacia confusa leaves .................................................................................... 38 圖12. 相思樹葉子甲醇粗抽出物及其各可溶部之總黃酮類含量 Fig. 12 Total flavonoids contents of methanolic crude extract and its fractions from Acacia confusa leaves .................................................................................... 40 圖 13. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之DPPH自由基抑制作用 Fig. 13 Inhibition of DPPH free radical of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa ............................................................................... 41 圖14. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之超氧自由基抑制作用 Fig. 14 Inhibition of superoxide radical of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa ................................................................. 42 圖15. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之亞鐵離子螯合效果(濃 度2.5 mg/mL) Fig. 15 Scavenging of Fe2+ of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa(Concentration = 2.5 mg/mL) ........................................ 43 圖16. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之總酚類含量 Fig. 16 Total phenolic contents of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa ........................................................................................... 45 圖17. 相思樹葉子抽出物乙酸乙酯次分離部Et6~Et8之總黃酮類含量 Fig. 17 Total flavnoids contents of EtOAc subfractions Et6~Et8 from the leaf extract of Acacia confusa ........................................................................................... 46 圖18. Gallic acid methyl ester之EIMS圖譜 Fig. 18. EIMS spectrum of gallic acid methyl ester .................................................. 52 圖19. Gallic acid methyl ester之IR圖譜 Fig. 19. IR spectrum of gallic acid methyl ester ........................................................ 52 圖20. Gallic acid methyl ester之1H-NMR圖譜(CD3OD, 500 MHz) Fig. 20. 1H-NMR spectrum of gallic acid methyl ester (CD3OD, 500 MHz) ............ 53 圖21. Gallic acid methyl ester之13C-NMR圖譜(CD3OD, 125 MHz) Fig. 21. 13C-NMR spectrum of gallic acid methyl ester (CD3OD, 125 MHz) ........... 53 圖22. Gallic acid methyl ester之HMBC圖譜(CD3OD, 500 MHz) Fig. 22. HMBC spectrum of gallic acid methyl ester (CD3OD, 500 MHz) .................. 54 圖23. Luteolin之EIMS圖譜 Fig. 23. EIMS spectrum of luteolin ........................................................................... 57 圖24. Luteolin之IR圖譜 Fig. 24. IR spectrum of luteolin ................................................................................. 57 圖25. Luteolin之1H-NMR圖譜(DMSO-d6, 500 MHz) Fig. 25. 1H-NMR spectrum of luteolin (DMSO-d6, 500 MHz) ................................. 58 圖26. Luteolin之13C-NMR圖譜(DMSO-d6, 125 MHz) Fig. 26. 13C-NMR spectrum of luteolin (DMSO-d6, 125 MHz) ................................ 58 圖27. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之ESIMS圖譜 Fig. 27. ESIMS spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside ... 61 圖28. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之IR圖譜 Fig. 28. IR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside ........... 62 圖29. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之1H-NMR圖譜 (DMSO-d6, 500 MHz) Fig. 29. 1H-NMR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside (DMSO-d6, 500 MHz) .................................................................................. 62 圖30. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之13C-NMR 圖譜(DMSO-d6, 125 MHz) Fig. 30. 13C-NMR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside (DMSO-d6, 125 MHz) ................................................................................... 63 圖31. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之HSQC圖譜 (DMSO-d6, 500 MHz) Fig. 31. HSQC spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside (DMSO-d6, 500 MHz) .................................................................................. 64 圖32. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside之HMBC圖譜 (DMSO-d6, 500 MHz) Fig. 32. HMBC spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside (DMSO-d6, 500 MHz) .................................................................................. 65 圖33. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之ESIMS 圖譜 Fig. 33. ESIMS spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether ............................................................................................. 68 圖34. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之IR 圖譜 Fig. 34. IR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether ............................................................................................. 69 圖35. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之 1H-NMR圖譜(DMSO-d6, 500 MHz) Fig. 35. 1H-NMR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether (DMSO-d6, 500 MHz) ........................................................ 69 圖36. Myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之 13C-NMR圖譜(DMSO-d6, 125 MHz) Fig. 36. 13C-NMR spectrum of myricetin 3-O-(3’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether (DMSO-d6, 125 MHz) ......................................................... 70 圖37. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之ESIMS 圖譜 Fig. 37. ESIMS spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether ............................................................................................. 73 圖38. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether之IR 圖譜 Fig. 38. IR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ether ............................................................................................. 74 圖39. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter之 1H-NMR圖譜(DMSO-d6, 500 MHz) Fig. 39. 1H-NMR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter (DMSO-d6, 500 MHz) ......................................................... 74 圖40. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter之 13C-NMR圖譜(DMSO-d6, 125 MHz) Fig. 40. 13C-NMR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside 7-methyl ehter (DMSO-d6, 125 MHz) ......................................................... 75 圖41. Myricetin-3-glucopyranoside之IR圖譜 Fig. 41. IR spectrum of myricetin-3-glucopyranoside .............................................. 78 圖42. Myricetin-3-glucopyranoside之1H-NMR圖譜(CD3OD, 500 MHz) Fig. 42. 1H-NMR spectrum of myricetin-3-glucopyranoside (CD3OD, 500 MHz) .. 79 圖43. Myricetin-3-glucopyranoside之13C-NMR圖譜(CD3OD, 125 MHz) Fig. 43. 13C-NMR spectrum of myricetin-3-glucopyranoside (CD3OD, 125 MHz) . 79 圖44. Myricetin-3-glucopyranoside之HSQC圖譜(CD3OD, 500 MHz) Fig. 44. HSQC spectrum of myricetin-3-glucopyranoside (CD3OD, 500 MHz) .... 81 圖45. Myricetin-3-glucopyranoside之HMBC圖譜(CD3OD, 500 MHz) Fig. 45. HMBC spectrum of myricetin-3-glucopyranoside (CD3OD, 500 MHz) .. 81 圖46. Myricetin-3-rhamnopyranoside之IR圖譜 Fig. 46. IR spectrum of myricetin-3-rhamnopyranoside ........................................... 84 圖47. Myricetin-3-rhamnopyranoside之1H-NMR圖譜(CD3OD, 500 MHz) Fig. 47. 1H-NMR spectrum of myricetin-3-rhamnopyranoside (CD3OD, 500 MHz) .. 84 圖48. Myricetin-3-rhamnopyranoside之13C-NMR圖譜(CD3OD, 125 MHz) Fig. 48. 13C-NMR spectrum of myricetin-3-rhamnopyranoside (CD3OD, 125 MHz) . 85 圖49. Myricetin-3-rhamnopyranoside之HSQC圖譜(CD3OD, 500 MHz) Fig. 49. HSQC spectrum of myricetin-3-rhamnopyranoside (CD3OD, 500 MHz) ... 86 圖50. Myricetin-3-rhamnopyranoside之HMBC圖譜(CD3OD, 500 MHz) Fig. 50. HMBC spectrum of myricetin-3-rhamnopyranoside (CD3OD, 500 MHz) .. 87 圖51. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之IR圖譜 Fig. 51. IR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside ........... 90 圖52. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之1H-NMR圖譜 (CD3OD, 500 MHz) Fig. 52. 1H-NMR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside (CD3OD, 500 MHz) ...................................................................................... 91 圖53. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之13C-NMR圖譜 (CD3OD, 125 MHz) Fig. 53. 13C-NMR spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside (CD3OD, 125 MHz) ...................................................................................... 91 圖54. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之HSQC圖譜 (CD3OD, 500 MHz) Fig. 54. HSQC spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside (CD3OD, 500 MHz) ...................................................................................... 93 圖55. Myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside之HMBC圖譜 (CD3OD, 500 MHz) Fig. 55. HMBC spectrum of myricetin 3-O-(2’’-O-galloyl)-α-rhamnopyranoside (CD3OD, 500 MHz) ...................................................................................... 93 圖56. Quercetin-3-rhamnopyranoside之IR圖譜 Fig. 56. IR spectrum of quercetin-3-rhamnopyranoside ............................................ 96 圖57. Quercetin-3-rhamnopyranoside之1H-NMR圖譜(CD3OD, 500 MHz) Fig. 57. 1H-NMR spectrum of quercetin-3-rhamnopyranoside (CD3OD, 500 MHz) ... 96 圖58. Quercetin-3-rhamnopyranoside之13C-NMR圖譜(CD3OD, 125 MHz) Fig. 58. 13C-NMR spectrum of quercetin-3-rhamnopyranoside (CD3OD, 125 MHz) ... 97 圖59. Quercetin-3-rhamnopyranoside之HSQC圖譜 (CD3OD, 500 MHz) Fig. 59. HSQC spectrum of quercetin-3-rhamnopyranoside (CD3OD, 500 MHz) .. 98 圖60. Quercetin-3-rhamnopyranoside之HMBC圖譜 (CD3OD, 500 MHz) Fig. 60. HMBC spectrum of quercetin-3-rhamnopyranoside (CD3OD, 500 MHz) . 99 圖61. Europetin-3-rhamnopyranoside之IR圖譜 Fig. 61. IR spectrum of europetin-3-rhamnopyranoside .......................................... 102 圖62. Europetin-3-rhamnopyranoside之1H-NMR圖譜(CD3OD, 500 MHz) Fig. 62. 1H-NMR spectrum of europetin-3-rhamnopyranoside (CD3OD, 500 MHz). 102 圖63. Europetin-3-rhamnopyranoside之13C-NMR圖譜(CD3OD, 125 MHz) Fig. 63. 13C-NMR spectrum of europetin-3-rhamnopyranoside (CD3OD, 125 MHz)... 103 圖64. Europetin-3-rhamnopyranoside之HSQC圖譜(CD3OD, 500 MHz) Fig. 64. HSQC spectrum of europetin-3-rhamnopyranoside (CD3OD, 500 MHz) . 104 圖65. Europetin-3-rhamnopyranoside之HMBC圖譜(CD3OD, 500 MHz) Fig. 65. HMBC spectrum of europetin-3-rhamnopyranoside (CD3OD, 500 MHz) ... 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗氧化活性 | zh_TW |
| dc.subject | 抽出物、黃酮類化合物 | zh_TW |
| dc.subject | 葉子 | zh_TW |
| dc.subject | 總酚類含量 | zh_TW |
| dc.subject | 相思樹 | zh_TW |
| dc.subject | Total phenolic content | en |
| dc.subject | Acacia confusa | en |
| dc.subject | Antioxidant activity | en |
| dc.subject | Extracts | en |
| dc.subject | Flavonoid | en |
| dc.subject | Leaves | en |
| dc.title | 相思樹葉子抗氧化活性成分之分析與鑑定 | zh_TW |
| dc.title | Analysis and Identification of Antioxidant Constituents from Acacia confusa Leaves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇裕昌(Yu-Chang Su),謝瑞忠(Jui-Chung Shieh),王升陽(Sheng-Yang Wang),張惠婷(Hui-Ting Chang) | |
| dc.subject.keyword | 相思樹,抗氧化活性,抽出物、黃酮類化合物,葉子,總酚類含量, | zh_TW |
| dc.subject.keyword | Acacia confusa,Antioxidant activity,Extracts,Flavonoid,Leaves,Total phenolic content, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
