請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李琳山(Lin-Shan Lee) | |
| dc.contributor.author | Yen-Ting Lu | en |
| dc.contributor.author | 盧彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:20:40Z | - |
| dc.date.available | 2007-08-02 | |
| dc.date.copyright | 2007-08-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | 參考文獻
【1】 Tseng, Chiu-yu, “Prosody Analysis” , in Advances in Chinese Spoken Language Processing, edited by Chin-Hui Lee, Haizhou Li, Lin-shan Lee, Ren-Hua Wang, Qiang Huo, World Scientific Publishing, Singapore, pp.57-76, Singapore. 2006 【2】 黃瑞婷, “使用韻律模型的進一步大字彙國語連續語音辨識(Improved Large Vocabulary Continuous Mandarin Speech Recognition By Prosodic Modeling)”, 碩士論文, 國立台灣大學電信工程學研究所, 2006. 【3】 Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, “Spoken Language Processing – A Guide to Theory, Algorithm and System Development” International Editions. 2005 【4】 K. Chen, M. Hasegawa-Johnson and S. Kim, “Prosody Dependent Speech Recognition on Radio News”, Department of Electrical and Computer Engineering and Department of Linguistics University of Illinois at Urbana-Champaign, Urbana, IL 61801, 2003 【4】 Sarah Borys, Mark Hasegawa-Johnson, and Jennifer Cole, “Prosody as A Conditioning Variable in Speech Recognition”, Department of Electrical and Computer Engineering and Department of Linguistics, University of Illinois at Urbana-Champaign, Urbana, IL 61901, 2003 【5】 CAO Jianfen,” Rhythm of Spoken Chinese -- Linguistic and Paralinguistic Evidences” , Institute of Linguistics Chinese Academy of Social Sciences, Report of Phonetic Research 2000. 【6】 Lei He, Jie Hao, “A Tone Recognition Framework For Continuous Mandarin Speech”, Toshiba(China) Research and Development Center, Interspeech 2006 【7】 林婉怡, “流利國語語音之聲調辨識及其在大字彙辨識上的應用(Tone Recognition for Fluent Mandarin Speech and Its application on Large Vocabulary Recognition)”, 碩士論文, 國立台灣大學電信工程學研究所,2004 【8】 Wentao Gu, Keikichi Hirose, and Hiroya Fujisaki, “Comparison of Perceived Prosodic Boundaries and Global Characteristics of Voice Fundamental Frequency Contours in Mandarin Speech”, in ISCSLP 2006. 【9】 Li, A., et al. “Speech Corpus of Chinese Discourse and the Phonetic Research.” Proc. ICSLP 2000, Beijing, China vol. 4: 13-18. 【10】 Zhu Weibin, Shen Liqin, and Niu Xiaochuan, “Duration Modeling for Chinese Synthesis from C-ToBI Labeled Corpus”, Speech Group, IBM China Research Lab.Beijing, 100085, China, 2000. 【12】 Li, A. “Chinese Prosody and Prosodic Labeling of Spontaneous Speech.” Proc. Speech Prosody 2002, Aix-en-Provence, France 39-46. 【13】 Silverman, K. E. A., M. Beckman, J. F. Pitrelli, M. Ostendorf, C. Wightman, P. Price, J. Pierrehumbert, and J. Hirschberg. 1992. “ToBI: A standard for Labeling English Prosody.” In Proceedings of the 1992 International Conference on Spoken Language Processing, Vol. 2, 867-870. Banff, Canada. 【14】 Institute of Linguistics Chinese Academy of Social Sciences. http://ling.cass.cn/yuyin/index.htm 【15】 Chiu-yu Tseng, Shao-huang Pin, Yehlin Lee, Hsin-min Wang, Yong-cheng Chen, “Fluent speech prosody: framework and modeling,” Speech Communication, Vol.46, issues 3-4, July 2005, Special Issue on Quantitative Prosody Modeling for Natural Speech Description an Generation,284-309. 【16】 “A detailed description of COSPRO and Tookit,” http://reg.myet.com/registration/corpus/en/Papers.asp 【17】 I. H. Witten, E. Frank “Data Mining - Practical Machine Learning Tools and Techniques”, Second Edition, 2005. 【18】 Pawel Lewicki, Thomas Hill “Statistics: Methods and Applications” StatSoft, Inc. 2006. 【19】 Breiman L., Friedman J. H., Olshen R. A., Stone, C. J. “Classification and Regression Trees.” Wadsworth. 1984. 【20】 Richard O. Duda, Peter E. Hart, David G. Stork, “Pattern Classification” John Wiley &Sons, Inc. Second Edition, 2001. 【21】 Leo Breiman, Adele Cutler, “Random Forests” Machine Learning Vol. 45, 2001 October, p5-32 【22】 Hanna M. Wallach, “Conditional Random Fields: An Introduction” University of Pennsylvania. February 24, 2004 【23】 J. Lafferty, A. McCallum, and F. Pereira. “Conditional random fields: probabilistic models for segmenting and labeling sequence data.” In International Conference on Machine Learning, 2001. 【24】 Heng Kang, Wenju Liu , “Prosodic Words Prediction from Lexicon Words with CRF and TBL Joint Method” National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences. ISCSLP, 2006 【25】 HTK Speech Recognition Toolkit http://htk.eng.cam.ac.uk/ 【26】 Chao Wang and Stephanie Seneff, “Robust pitch tracking for prosodic modeling,” in Proc. ICASSP, 2000 【27】 ESPS Version 5.0 Program Manual. 1993 【28】 中央研究院中文斷詞系統,http://ckipsvr.iis.sinica.edu.tw/ 【29】 http://crfpp.sourceforge.net/ taku@chasen.org | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28748 | - |
| dc.description.abstract | 韻律是日常口語對話中產生之現象,因此在語音辨識系統中加入了韻律的資訊,能使辨識的結果更趨近於人說話時所產生的語句。本論文運用大量韻律資訊訓練韻律模型,並與傳統考慮聲學模型以及語言模型之語音辨識系統結合,得到更佳的辨識率。 本論文以音節為單位抽取基頻、能量、長度以及類別參數,訓練聲調與韻律詞邊界之韻律模型;而在韻律模型的訓練上,又以辭典詞與韻律詞分別訓練並比較其產生之韻律模型對辨識系統的幫助。為了得到較豐富的韻律詞邊界資訊,採用條件隨機域的方法,預測了韻律詞的邊界,其準確率、回收率、F1評比以及邊界正確率都在百分之八十以上。此外,亦比較韻律模型對於特定語者與非特定語者之影響。 在實驗的架構上,採取兩階段,在第一階段中作傳統的辨識產生詞圖;第二階段根據詞圖中的每個詞弧上音節的時間區間抽取相對應的韻律特徵參數,建立韻律模型後在詞弧上重新計分。實驗結果顯示,以韻律詞訓練之韻律模型有較好的表現,在字元的辨識率上優於傳統模型與辭典詞韻律模型。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:20:40Z (GMT). No. of bitstreams: 1 ntu-96-R94921024-1.pdf: 1040482 bytes, checksum: 07fe8839c6c03fcdb81971e19e49e0d5 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書......................... i 誌謝.............................. iii 摘要.............................. v 目錄.............................. vii 圖目錄............................. x 表目錄............................. xi 第一章:導論 ......................... 1 1.1 研究動機........................ 1 1.2 研究主題相關背景.................... 2 1.3 本論文之研究方法與主要成果............... 3 1.4 章節概要........................ 3 第二章:基礎背景簡介 ..................... 5 2.1 中文語音韻律階層結構.................. 5 2.2 基本分類法....................... 7 2.2.1 決策樹 ...................... 7 2.2.2 隨機森林 ..................... 10 2.2.3 條件隨機域 .................... 12 2.3 大字彙中文連續語音辨識未使用韻律模型之基礎實驗及架構.. 14 2.3.1 基礎實驗語料 ................... 14 2.3.2 語音辨識系統架構 ................. 15 2.3.3 語音特徵參數抽取 ................. 16 2.3.4 聲學模型架構 ................... 16 2.3.5 語言模型架構 ................... 20 2.3.6 基礎實驗 ..................... 20 2.4 本章結論........................ 21 第三章:結合韻律模型的辨識系統 ................ 23 3.1 實驗系統整體架構.................... 23 3.2 韻律相關特徵參數抽取.................. 25 3.2.1 基頻 ....................... 26 3.2.2 能量特徵參數 ................... 27 3.2.3 音高特徵參數 ................... 28 3.2.4 長度特徵參數 ................... 29 3.2.5 類別參數 ..................... 29 3.3 中文韻律模型建立.................... 33 3.4 本章結論........................ 37 第四章:語料韻律詞邊界之預測 ................. 39 4.1 韻律詞邊界預測..................... 39 4.1.1預測韻律詞邊界之語料................ 39 4.1.2預測韻律詞邊界之實驗設計.............. 40 4.1.3 預測韻律詞邊界之參數 ............... 44 4.1.4 預測韻律詞邊界之方法 ............... 46 4.2 韻律詞邊界之預測與結果................. 49 4.3 本章結論........................ 53 第五章:實驗結果與綜合討論 ................... 55 5.1特定語者之基礎實驗結果 ................. 55 5.2 韻律模型特徵參數重要性分析 .............. 55 5.2.1 特徵參數在聲調上之重要性分析 ........... 56 5.2.2 特徵參數在韻律詞邊界上之重要性分析 ........ 56 5.3 結合韻律模型之大字彙中文連續語音辨識 ......... 58 5.3.1 結合韻律模型的辨識結果 .............. 58 5.3.2 綜合討論..................... 59 5.4 本章結論 ....................... 62 第六章:結論與展望 ...................... 63 6.1 結論 ......................... 63 6.2 展望 ......................... 64 參考文獻........................... 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 韻律 | zh_TW |
| dc.subject | 詞 | zh_TW |
| dc.subject | 韻律 | zh_TW |
| dc.subject | 模型 | zh_TW |
| dc.subject | 詞邊界 | zh_TW |
| dc.subject | 聲調 | zh_TW |
| dc.subject | 韻律 | zh_TW |
| dc.subject | prosodic model | en |
| dc.subject | tone | en |
| dc.subject | prosodic boundary | en |
| dc.subject | prosodic word | en |
| dc.title | 以預測的韻律詞邊界建構韻律模型使用於大字彙中文連續語音辨識 | zh_TW |
| dc.title | Large Vocabulary Continuous Mandarin Speech Recognition with Prosodic Modeling Using Predicted Prosodic Word Boundaries | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭秋豫(Chiu-Yu Tseng),王小川(Hsiao-Chuan Wang),陳信宏(Shin-Horng Chen) | |
| dc.subject.keyword | 韻律,詞,韻律,模型,韻律,詞邊界,聲調, | zh_TW |
| dc.subject.keyword | prosodic word,prosodic model,prosodic boundary,tone, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
