請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28746
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輔 | |
dc.contributor.author | Che-Yu Kuo | en |
dc.contributor.author | 郭哲佑 | zh_TW |
dc.date.accessioned | 2021-06-13T00:20:34Z | - |
dc.date.available | 2007-07-27 | |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-25 | |
dc.identifier.citation | 阮昌庭。2004。臺灣金線連水溶性多醣分子結構特徵。臺灣大學食品科技研究所碩士論文
李明治。2001。蘭菌 (絲核菌) 之生理、菌種生產及其對台灣金線連生長之影響。國立臺灣大學園藝學研究所碩士論文。 李國基。2001。台灣金線連及蘭菌之鑑定與生產技術改進。國立臺灣大學園藝學研究所碩士論文。 吳怡箴。2005。金線連多醣對小鼠免疫反應調節之研究。臺北醫學大學醫學研究所碩士論文。 周佰隆。2004。台灣特有「藥王」台灣金線連。中華民國自然生態保育協會大自然雜誌(82)。 許如君。2005。台灣金線連免疫調節蛋白IPAF活化免疫細胞之機制。國立臺灣大學園藝學研究所碩士論文。 許靜宜。2003。金線連與黃豆皮萃取物對抗氧化力與骨質疏鬆的影響。國立嘉義大學食品科學系碩士論文 張文瀠。2004。台灣金線連免疫調節蛋白之純化與活性分析。國立臺灣大學園藝學研究所碩士論文。 莊謹如。2005。台灣金線連有效分劃抑制thioacetamide誘發小鼠肝臟纖維化。中國醫藥大學醫學研究所碩士論文。 徐致芬。2003。台灣金線連有效分劃對小鼠非特異性免疫的調節。中國醫藥大學醫學研究所碩士論文。 劉新裕。1994。保健作物:金線連。台灣農作要覽:農作篇(一)。行政院農業委員會。 廖思穎。2004。台灣金線連多醣體成份對先天免疫反應的影響。中國醫藥大學醫學研究所碩士論文。 鄭佳如。2003。臺灣金線連對前列腺素F2α所誘導老鼠心臟肌原細胞肥大影響之研究。國立成功大學生物科技研究所碩士論文。 蕭宏柏。2005。台灣金線連有效萃取物對卵蛋白誘發小鼠呼吸道過度反應之免疫調節作用。中國醫藥大學醫學研究所碩士論文。 蕭翌柱、蔡新聲。2003。臺灣金線連風華再現。科學發展 (364) 16-21。行政院國家科學委員會。 謝俊生。2002。台灣金線連抑制肝癌細胞生長抗氧化機制的探討。中國醫藥學院醫學研究所碩士論文。 Abbas, A. K. and A. H. Lichtman. (Eds) 2005. Cellular and molecular immunology. ELSEVIER SAUNDERS. Andersson, J., A. Coutinho, W. Lernhardt and F. Melchers. 1977. Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell. 10: 27-34. Bernasconi, N. L., N. Onai and A. Lanzavecchia. 2003. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood. 101: 4500-4504. Cai, Y., J. Cheng, S. Mou and L. Yiqiang. 2005. Comparative study on the analytical performance of three waveforms for the determination of several aminoglycoside antibiotics with high performance liquid chromatography using amperometric detection. J. Chromatogr. A. 1085: 124-130. Casals, C., M. Barrachina, M. Serra, J. Lloberas and A. Celada. 2007. Lipopolysaccharide up-regulates MHC class II expression on dendritic cells through an AP-1 enhancer without affecting the levels of CIITA. J. Immunol. 178: 6307-6315. Cepok, S., G. von Geldern, V. Grummel, S. Hochgesand, H. Celik, H. Hartung and B. Hemmer. 2006. Accumulation of class switched IgD-IgM- memory B cells in the cerebrospinal fluid during neuroinflammation. J. Neuroimmunol. 180: 33-39. Chang, T. L., C. M. Shea, S. Urioste, R. C. Thompson, W. H. Boom and A. K. Abbas. 1990. Heterogeneity of helper/inducer T lymphocytes. III. Responses of IL-2- and IL-4-producing (Th1 and Th2) clones to antigens presented by different accessory cells. J. Immunol. 145: 2803-2808. Dubois, B., B. Vanbervliet, J. Fayette, C. Massacrier, C. Van Kooten, F. Briere, J. Banchereau and C. Caux. 1997. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J. Exp. Med. 185: 941-951. Ebinuma, H., O. Miyazaki, H. Yago, K. Hara, T. Yamauchi and T. Kadowaki. 2006. A novel ELISA system for selective measurement of human adiponectin multimers by using proteases. Clin. Chim. Acta. 372: 47-53. Fagarasan, S. and T. Honjo. 2000. T-Independent immune response: new aspects of B cell biology. Science. 290: 89-92. Fillatreau, S. and R. A. Manz. 2006. Tolls for B cells. Eur. J. Immunol. 36: 798-801. Gantner, B. N., R. M. Simmons, S. J. Canavera, S. Akira and D. M. Underhill. 2003. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197: 1107-1117. Garcia, M. C. 2005. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825: 111-123. Ikeuchi, M., K. Yamaguchi, T. Nishimura and K. Yazawa. 2005. Effects of Anoectochilus formosanus on endurance capacity in mice. J. Nutr. Sci. Vitaminol (Tokyo). 51: 40-44. Janeway, C. A., P. Travers, M. Walport and M. J. Shlomchik. (Eds) 2005. Immunobiology : the immune system in health and disease New York: Garland Science. Kaisho, T. and S. Akira. 2006. Toll-like receptor function and signaling. J. Allergy. Clin. Immunol. 117: 979-987; quiz 988. Lanzavecchia, A. and F. Sallusto. 2007. Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr. Opin. Immunol. McHeyzer-Williams, L. J. and M. G. McHeyzer-Williams. 2005. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23: 487-513. Mitulovic, G. and K. Mechtler. 2006. HPLC techniques for proteomics analysis--a short overview of latest developments. Brief Funct. Genomic Proteomic. 5: 249-260. Mond, J. J., A. Lees and C. M. Snapper. 1995. T cell-independent antigens type 2. Annu. Rev. Immunol. 13: 655-692. Patton, A., M. C. Mullenix, S. J. Swanson and E. Koren. 2005. An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen. J. Immunol. Methods. 304: 189-195. Rui, L. and C. C. Goodnow. 2006. Lymphoma and the control of B cell growth and differentiation. Curr. Mol. Med. 6: 291-308. Ruprecht, C. R. and A. Lanzavecchia. 2006. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 36: 810-816. Sancho, D., M. Gomez and F. Sanchez-Madrid. 2005. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26: 136-140. Sen, G., A. Q. Khan, Q. Chen and C. M. Snapper. 2005. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. J. Immunol. 175: 3084-3091. Singh, V. and J. N. Agrewala. 2006. Regulatory role of pro-Th1 and pro-Th2 cytokines in modulating the activity of Th1 and Th2 cells when B cell and macrophages are used as antigen presenting cells. BMC Immunol. 7: 17. Tsavkelova, E. A., T. A. Cherdyntseva and A. I. Netrusov. 2004. [Bacteria associated with the roots of epiphytic orchids]. Mikrobiologiia. 73: 825-831. Tseng, C. C., H. F. Shang, L. F. Wang, B. Su, C. C. Hsu, H. Y. Kao and K. T. Cheng. 2006. Antitumor and immunostimulating effects of Anoectochilus formosanus Hayata. Phytomedicine. 13: 366-370. Wang, J., X. Wang, F. Chen, P. J. Wan, G. He and Z. Li. 2005a. Development of competitive direct ELISA for gossypol analysis. J. Agric. Food Chem. 53: 5513-5517. Wang, L. F., C. M. Lin, C. M. Shih, H. J. Chen, B. Su, C. C. Tseng, B. B. Gau and K. T. Cheng. 2005b. Prevention of cellular oxidative damage by an aqueous extract of Anoectochilus formosanus. Ann N Y Acad. Sci. 1042: 379-386. Wu, J. B., W. L. Lin, C. C. Hsieh, H. Y. Ho, H. S. Tsay and W. C. Lin. 2007. The hepatoprotective activity of kinsenoside from Anoectochilus formosanus. Phytother. Res. 21: 58-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28746 | - |
dc.description.abstract | 金線連免疫調節蛋白 (IPAF) 純化自台灣金線連 (Anoectochilus formosanus Hayata),可透過細胞表面受器 TLR4 活化小鼠巨噬細胞,以及提高 B 淋巴細胞的增生,然而,IPAF 活化 B 淋巴細胞之機制及其活化作用尚未明瞭。因此,本研究探討 IPAF 對 B 淋巴細胞之免疫調節作用,以及其活化 B 淋巴細胞與 TLR2/TLR4 訊息傳導路徑之關係,進一步分離 IPAF 中的有效成分,並建立 IPAF 酵素連結免疫分析定量平台。結果發現,IPAF 可提高小鼠 B 淋巴細胞表面的 CD69 及 MHC class II 表現量,也可促進 B 淋巴細胞之細胞增生。同時發現,IPAF 對於 B 淋巴細胞分泌 IgM 抗體具有時間及濃度依存效應,但 IgG 抗體並無明顯增加,推測 IPAF 為胸腺非依賴性第一型抗原,不需要 T 淋巴細胞即能直接活化 B 淋巴細胞。另一方面,IPAF 同樣可活化 TLR2-/- 及 TLR4-/- 小鼠之 B 淋巴細胞,顯示 TLR2 及 TLR4 並非 IPAF 活化 B 淋巴細胞之主要訊息傳導路徑。進一步利用逆相高效能液相層析技術分析 IPAF,可將其分離出 4 個蛋白質樣品,發現其中之 IPAFP3 (14.0 kDa,pI = 8.4) 具有與 IPAF 相似之活性,可促進 B 淋巴細胞的增生及抗體 IgM 的產生。
而在IPAF 酵素連結免疫分析平台之建立方面,利用多株抗體 (J0) 作為捕捉抗體,單株抗體 (I) 作為偵測抗體,進行 IPAF 濃度與吸光值的簡單迴歸分析,可得吸光值與濃度校正曲線 (y = 0.0041 x + 0.6516,r2 = 0.9894,p<0.05),定量濃度範圍在 6.25 - 400 μg/mL,最低偵測極限為 0.57 μg/mL,其回收率則為 97.8%。實際定量市售金線連茶包與新鮮金線連植株根、莖及葉中 IPAF 之含量,結果發現,其 IPAF 濃度分別為 9.5 mg/g、1323.5 μg/g、87.4 μg/g 及 314.7 μg/g。因此,此方法有助於進一步定量金線連樣品及相關產品中免疫調節蛋白 IPAF 之含量。 | zh_TW |
dc.description.abstract | IPAF, the immunomodulatory protein complex purified previously from Anoectochilus formosanus Hayata, was capable to activate murine macrophages through TLR4 pathway and to stimulate B lymphocytes proliferation. However, the activation mechanism of IPAF on B lymphocytes remained unclear. The objectives of this study aimed to evaluate the immunoregulatory effects of IPAF on murine B lymphocytes, to investigate the activation of B lymphocyte by TLR2/TLR4 signaling pathways, to further identify the effective component of IPAF proteins and to establish an ELISA assay system to determine IPAF. Our results demonstrated that IPAF could activate murine B lymphocytes. It could up-regulated the expression of surface marker CD69 and MHC class II, stimulated the cell proliferation. Additionally, IPAF increased IgM but not IgG antibody secretion of murine B lymphocytes in a time and dose dependent manner, suggesting IPAF a type-1 thymus-independent antigen to activate B lymphocytes without the assistance of T lymphocytes. On the other hand, IPAF was capable to activate the B lymphocytes from TLR2- and TLR4-deficient mice, which implied that IPAF did not activate through TLR4 and TLR2 signaling pathway in murine B lymphocytes. Furthermore, IPAF could be separated into 4 proteins by RP-HPLC. Among these 4 proteins, IPAFP3 (14.0 kDa, pI = 8.4) showed similar activity with IPAF to increase B lymphocytes proliferation and IgM secretion. Finally, we established a sandwich ELISA platform for IPAF determination by using a polyclonal Ab (J0) as the capture antibody and a biotinylated mAb (I) as the detection antibody. The calibration curve gave a linear line (y = 0.0041 x + 0.6516, r2 = 0.9894, p<0.05) and a dynamic range with IPAF concentrations between 6.25 - 400 μg/mL. Its detection limit was 0.57 μg/mL and the recovery was 97.8%. This method was also used to measure the IPAF content in commercial tea bags and fresh leaves, stem and roots of A. formosanus and the results showed their IPAF amounts were 9.5 mg/g, 1323.5 μg/g, 87.4 μg/g and 314.7 μg/g, respectively. This analytical method could be highly helpful for further determination of IPAF in A. formosanus Hayata samples and its relative products. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:20:34Z (GMT). No. of bitstreams: 1 ntu-96-R94628212-1.pdf: 2140727 bytes, checksum: 4b5784772269282ef35fcaff8ed46f46 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 摘要………………………………………………………………….........I
Abstract…………………………………………………………….....…III 目錄………………………………………………………………….…..V 圖表目錄……………………………………………………………...VIII 壹、 前人研究………………………………………………….………...1 一、 金線連簡介………………………………….………………....1 (一) 金線連的分類與特性………………………………...1 (二) 金線連的保健功能研究………………………….…..2 二、 金線連免疫調節蛋白 IPAF 的前期研究…………................9 三、 B 淋巴細胞的生長與分化……………………………….….11 (一) B 淋巴細胞的活化………………………………....12 (二) Toll-like receptors 與 B 淋巴細胞之關係………...17 四、 研究動機與目的……………………………………………...21 貳、 材料與方法………………………………………………………..24 一、 金線連免疫調節蛋白樣本製備……………………………...24 二、 金線連免疫調節蛋白生化特性分析………………………...26 (一) 蛋白質濃度測定…………………………………….26 (二) 變性膠體電泳分析………………………………….30 (三) 逆相高效能液相層析分析 (RP-HPLC analysis)…..34 (四) 二維電泳分析……………………………………….36 (五) 西方轉漬分析……………………………………….40 三、 金線連免疫調節蛋白對 B 淋巴細胞的活化效應………....42 (一) 小鼠脾臟細胞之取得……………………………….43 (二) 利用 MACS 磁珠分選 B 淋巴細胞……………...45 (三) 細胞增生分析 (Brd-U method)…………………….49 (四) 利用流式細胞儀分析 B 淋巴細胞表面標記……..52 (五) 酵素連結免疫分析法分析 B 淋巴細胞抗體表現..55 四、 金線連免疫調節蛋白對 B 淋巴細胞作用路徑分析……....59 (一) C57BL/10ScN 小鼠試驗…………………………...59 (二) B6.129-TLR2tmlkir/J 小鼠試驗 ..…………………....60 五、 金線連免疫調節蛋白濃度標準曲線………………………...60 (一) IPAF 抗體生物素化(biotinylation)…………………60 (二) IPAF 捕捉及偵測抗體配對之 ELISA 分析………63 (三) IPAF 濃度標準曲線建立…………………………...66 (四) 利用 IPAF 之 ELISA 定量平台分析金線連樣品..68 六、 統計分析……………………………………………………...70 參、 結果………………………………………………………………..72 一、 金線連免疫調節蛋白之製備及生化特性分析……………...72 二、 金線連免疫調節蛋白 IPAF 的進一步分離………………..73 三、 金線連免疫調節蛋白對 B 淋巴細胞的活化作用………....76 四、 建立金線連免疫調節蛋白之 ELISA 分析方法…………....86 肆、 討論………………………………………………………………..91 一、 IPAF 中的 IPAFP3 可能才是真正活性物質………………91 二、 IPAF 屬於 TI-1 抗原能活化 B 淋巴細胞………………...93 三、 IPAF 活化 B 淋巴細胞與 TLR4 及 TLR2 之關係……...96 四、 IPAF 與 B、T 淋巴細胞之關係…………………………...101 五、 酵素連結免疫分析法應用於 IPAF 之定量………………103 伍、 結論………………………………………………………………107 參考文獻………………………………………………………………108 圖與表…………………………………………………………………114 | |
dc.language.iso | zh-TW | |
dc.title | 研究金線連免疫調節蛋白 IPAF 活化小鼠 B 淋巴細胞之機制及建立其免疫分析平台 | zh_TW |
dc.title | Mechanism of Murine B Lymphocytes Activation by Immunomodulatory Protein from Anoectochilus formosanus (IPAF) and Establishment of an Analytical Platform | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國傑,柯俊良,繆希椿 | |
dc.subject.keyword | 台灣金線連,金線連免疫調節蛋白,B 淋巴細胞,活化,免疫分析平台, | zh_TW |
dc.subject.keyword | Anoectochilus formosanus Hayata,immunomodulatory protein from Anoectochilus formosanus, IPAF,B lymphocytes,activation,analytical platform, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。