Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Chin-Fuh Lin)
dc.contributor.authorWei-Kai Wangen
dc.contributor.author王緯楷zh_TW
dc.date.accessioned2021-06-13T00:19:50Z-
dc.date.available2009-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation[1]Jams N. Downing, “Fiber-Optic Communications”
[2] A.J Kenyon, Progress in Quantum Electronics 26 225-284(2002)
[3]Makoto Yamada, “Overview of Wideband Optical Fiber Amplification
Technologies”, NTT Technical Review, 2, pp.12 Dec. 2004.
[4] Albert Polman, Frank C. J. M. van Veggel, J. Opt. Soc. Am. B, 21, 871-892(2004)
[5]Y. H. Xie, E. A. Fitzgerald, and Y. J. Mii, J. Appl. Phys 70 3223-3228 (1991)
[6] Michel J. F. Digonnet, Rare Earth Doped Fiber Lasers and Ampilifers, Dekker, 1993
[7] William J. Miniscalco, Journal of Lightwave Technology, Vol. 9, No. 2(1991)
[8] A. F. Elrefaire, D. A. Atlas, L. G. Kazovsky, and R. E. Wagner, Electron. Lett. 24, 158(1998)
[9] Graham R. Walker, Nigel G. Walker, Roger C. Steele, Martin J. Creaner, and Mike C. Brain, Journal of Lightwave Technology, Vol. 9, No. 2, (1991)
[10] Abraham, F. F. Homogeneous Nucleation Theory, Academic Press, New York.
[11]El-Shall M. S, and Edelstein A. S. “Formation of clusters and nanoparticles from a supersaturated vapor and selected properties” ,1998
[12]郭清癸、黃俊傑、牟中原 ”金屬奈米粒子的製造” 物理雙月刊,Vol. 23, No. 6, 2001
[13] P.G. Kik, A. Polman, Materials Science and Engineering, B81, 3–8, (2001)
[14]Zhuping Liu, Changhong Qi, Shixun Dai, Yasi Jiang, Lili Hu, Optical Materials, 21, 789–794, (2003)
[15] G. G. Vienne, W. S. Brocklesby, R. S. Brown, Z. J. Chen, J. D. Minelly, J. D. Roman, and D.N Payne, Optical Fiber Technology 2, 387-393 (1996)
[16] Michel J. F. Digonnet, Rare Earth Doped Fiber Lasers and Ampilifers, Dekker,1993
[17] Christof Strohhofer , Albert Polman, Optical Materials 21, 705-712 (2003).
[18] F.R.M. Adikan, A.S.M. Noor, and M.A. Mahdi, Optics Communications 236 ,167-172 (2004)
[19]石秉弘,碩士論文”混合氧化鉺奈米粒子與旋佈玻璃的矽基發光元件”。
[20] P.M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R.G. Elliman, N. Smith, M. Samoc, B. Luther-Davies, Optical Materials 27, 745-749 (2005)
[21] M.Q. Huda, S.I. Ali, Materials Science and Engineering B105, 146-149, (2003).
[22] B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, Appl. Phys. Lett. 64, 21-23 (1994).
[23] Kenji Imakita, Minoru Fujii, Shinji Hayashi, PHYSICAL REVIEW B, 71, 193301 (2005).
[24] A.J. Kenyon, C.E. Chryssou, T.M. Smeeton, C.J. Humphreys, D.E. Hole, Optical Materials 28, 655~659 (2006).
[25]A.Og. Dikovska, P.A Atanasov, I.G Dimitrov, C. Vasilev, T.
Kocourek, M. Jelinek, Applied Surface Science, 252 4569-4572 (2006)
[26]C. Strohhofer, A. Polman, J. Appl. Phys. 90 4314 (2001)
[27]A.J Kenyon, Progress in Quantum Electronics 26 225-284(2002)
[28]Pankove, “Optical Process in Semiconductors”
[29] Kiseok Suh , Jung H. Shin, Seok-Jun Seo and Byeong-Soo Bae, Appl. Phys. Lett. 89 223102(2006)
[30] Huang, M.H., et al., Science, 292 1897-1899.(2001)
[31] Park, S.H., S.H. Kim, and S.W. Han, Nanotechnology, 18(5).(2007)
[32] Jee Soo Chang, Ji-Hong Jhe, Moon-Seung Yang, Jung H. Shin, Kyung Joong Kim ,and Dae Won Moon, Appl. Phys. Lett. 89 181909(2006)
[33] K. Luterova, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T.Ostatnicky, K. Dohnalova, S. Cheylan, P. Gilliot, B. Honerlage, L. Pavesi, I. Pelant, Optical Materials 27,750-755,(2005)
[34]L. Zhang, H. Hu, C. Qi, F. Lin, Opt. Mater. 17 , 371(2001)
[35]Albert Polman, Frank C. J. M. van Veggel, J. Opt. Soc. Am. B,
21,871-892,(2004).
[36] Christof Strohhöfer, Optical properties of ion beam modified waveguide
materials doped with erbium and silver, Proefschrift Universiteit Utrecht,
2001.
[37] H. Mertensa and A. Polman, Appl. Phys. Lett. 89, 211107 (2006)
[38] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667-669, (1998).
[39] S. Collin, F. Pardo, R. Teissier and J. L. Pelouard, J. Opt. A: Pure Appl. Opt. 4, S154-S160(2002).
[40] A. V. Zayats and I. I. Smolyaninov, J. Opt. A: Pure Appl. Opt. 5, S16-S50, (2003).
[41] W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830, (2003).
[42] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Springer-Verlag, (1988)
[43] Enrico Trave, Giovanni Mattei, Enrico Trave, Giovanni Mattei, Chiara Maurizio, Giancarlo Battaglin, Appl. Phys. Lett. 89, 151121 (2006)
[44]C. Strohh fer and A. Polman, Appl. Phys. Lett. 81, 1414-1416 (2002)
[45]Neil W. Ashcroft and N. David Mermin “Solid State Physics”.
[46] Villarrubia, J. S., Surface Science 21, 287-300(1994)
[47]M. Thommpson, M.D. Baker, A.Christie and J. F. Tyson “Auger Electron Spectroscopy”
[48]K.D. Sevier, “Low Energy Electron Spectroscopy”
[49] J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kramer, H.U. Gudel, Journal of Luminescence, 117, 1–12, (2006).
[50] W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai , W. M. Liu, P. F. Wang, and G. G. Qin, Appl. Phy. Lett. 89, 022109 (2006)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28730-
dc.description.abstract在工程與光通訊的很多應用中,奈米技術給了許多機會來提供解決現今大量資料傳輸的問題。隨著對奈米技術的熱烈研究及對光通訊的需求,使用奈米粒子來製作矽基光通訊元件的新製造方法在這篇論文中被提出來。這種元件的製作方法是先混合旋塗玻璃及奈米粒子的發光層溶液,再利用旋轉塗佈的方式沉積在矽基板上。我們是用矽的原因是因為矽在現今積體電路工業上扮演著領導者的角色。
發光層發出的光波長是與1530nm相符合,在光通訊系統中是很重要的波段。發光層的主要組成為鉺離子與主材料。其中,鉺離子的來源是氧化鉺奈米粒子。主材料是用已經廣泛地使用在半導體製程的旋塗玻璃(SOG)來實行。也有包括像五氧化二磷、鋁、矽、氧化鐿、氧化釔及氧化鋁奈米粒子的共同摻雜在發光層內以修正其物理特性及改善發光效率。這些共同摻雜的影響也會被研究,並探討混合不同種類奈米粒子對發光行為的影響。為了讓發光層內鉺離子具有光活化及其他的化學反應的發生,在製程中熱退火是必須的。我們用元件放入高溫爐加熱的方式來達到這個目的。我們也做出多層奈米結構的發光元件,並探討各種不同的多層結構對於發光行為的影響。我們使用電子束蒸鍍(E-gun evaporation)的方式在元件上鍍上一貴金屬薄膜,並利用此薄膜增強鉺離子的發光效率。除此之外,我們也利用各種不同材料分析的方式來分析貴金屬薄膜增強鉺離子發光效率的物理機制。
與離子佈值、固相磊晶和其他技術做比較,我們的製造技術簡單且低成本。而且能與目前的積體電路製造技術相整合,對於日後光電與電子產業的結合非常有幫助,值得做更進一步的探討且具有發展的潛力。
zh_TW
dc.description.abstractWhile using a lot of the Engineering and optical communication, nanotechnology has offered a lot of chances and solved the problem that a large amount of transmitted information .With the popular research of nanotechnology and demand for the optical communication , a new manufacturing approach of the silicon-base optical communication device made by nanoparticles is put forward in this thesis. This kind of device manufacturing method is to fabricate the light-emitting layer in mixing nanoparticles and Spin-on Glass (SOG) first, and then utilize the way of the spin coating to deposit on the silicon base plate. The reason of using silicon is because the silicon is acting the part of leader on the integrated circuit industry now.
The wavelength emitted by light-emitting layer is 1530nm, it is very important wave band in the optical communication system. The main composition of light-emitting layer is erbium ion and host material. The source of the erbium ion is erbium oxide (Er2O3) nanoparticle. Host material is Spin-On glass that has widely used in semiconductor manufacturing process. We also use other nanoparticles including P2O5, Al, Si, Yb2O3, Y2O3 and Al2O3 to endure the mixing commonly for modifying its physical characteristic and improving the light-emitting efficiency. These influence mixed together will be studied too, and will study the influence of light-emitting behavior in mixture of different kinds of nanoparticle. For erbium ion in light-emitting layer with light activated process and other chemical reaction, it is necessary to anneal the devise with high temperature in fabrication process. We achieve this goal by heating devise in the high-temperature furnace is heated. We fabricate the multi-layer luminescence device in nanostructures too, and study the influence of light-emitting behavior in all kinds of multi-layer nanostructures. We use the E-gun evaporation method to evaporate a noble metal thin film on the device, and utilize this thin film to strengthen the luminescence efficiency of the erbium ion. In addition, we use different kinds of material analysis method to analyses the physics mechanism of luminescence efficiency of erbium ion strengthened by noble metal thin film.
To compare with other kinds of fabrication technology, like ion implantation and solid-state epitaxy, our of manufacturing technology is simple and low cost of. And can combine with the present integrated circuit manufacturing technology, extraordinary to the combination of the photonic and electronic industry in the future. Helpful, worth doing the further discussion and potentiality with development
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:19:50Z (GMT). No. of bitstreams: 1
ntu-96-R94941084-1.pdf: 1280856 bytes, checksum: f1b4c1050b00ecab9c9d74e4d81815b0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 前言
1.1 研究動機 1
1.2 本篇論文概要 5
第二章 基本理論與實驗架構
2.1 簡介 6
2.2 鉺離子物理及特性 6
2.3 掺鉺光纖放大器工作原理及其用途 9
2.4 奈米粒子的表面效應及特性 11
2.5 發光層製程 13
2.6 實驗架設與量測 15
2.7 結論 16
第三章 摻雜不同成分奈米粒子的影響
3.1 簡介 17
3.2 五氧化二磷奈米粒子的影響 18
3.3 氧化鐿奈米粒子的影響 19
3.4 矽奈米粒子的影響 25
3.5 鋁奈米粒子的影響 34
3.6 氧化釔奈米粒子的影響 41
3.7 氧化鋁奈米粒子的影響 43
3.8 不同奈米粒子間的比較 47
3.9 結論 51
第四章 多層奈米結構的發光元件
4.1 簡介 53
4.2 發光層溶液旋塗在氧化鋅奈米線上 53
4.3 發光層-二氧化矽-矽基板 結構 58
4.4 銀奈米粒子旋塗在發光層上 61
4.5 結論 63
第五章 利用貴金屬元素薄膜增強發光效率
5.1 簡介 65
5.2 元件製作與實驗結果 70
5.3 製程溫度的影響 79
5.4 材料分析 82
5.5 結論 87
第六章 論文總結與未來展望
6.1 論文總結 89
6.2 未來展望 90
參考文獻 92
dc.language.isozh-TW
dc.title以奈米粒子與奈米結構製作矽基摻鉺發光元件之研究zh_TW
dc.titleStudy and Fabrication of Silicon-base Erbium-doped Light-emitting Devise with Nanoparticles and Nanostructuresen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇國棟(Guo-Dung Su),吳育任(Yuh-Renn Wu)
dc.subject.keyword奈米粒子;鉺;旋塗玻璃;高溫退火;矽基元件,zh_TW
dc.subject.keywordnanoparticle,erbium,Spin-On glass,high-temperature annealing,silicon-base device,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved