Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠
dc.contributor.authorYen-Ta Wuen
dc.contributor.author巫衍達zh_TW
dc.date.accessioned2021-06-13T00:18:33Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citationAlbrich,W.C., Monnet,D.L., and Harbarth,S. (2004). Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerg. Infect. Dis. 10, 514-517.
Arthur,M., Depardieu,F., Cabanie,L., Reynolds,P., and Courvalin,P. (1998). Requirement of the VanYand VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol Microbiol 30, 819–830.
Barth,H., Aktories,K., Popoff,M.R., and Stiles,B.G. (2004). Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 68, 373-402, table.
Barza,M. and Travers,K. (2002). Excess infections due to antimicrobial resistance: the 'Attributable Fraction'. Clin. Infect. Dis. 34 Suppl 3, S126-S130.
Bouhss,A., Crouvoisier,M., Blanot,D., and Mengin-Lecreulx,D. (2004). Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J. Biol. Chem. 279, 29974-29980.
Bouhss,A., Mengin-Lecreulx,D., Le,B.D., and Van,H.J. (1999). Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol. Microbiol. 34, 576-585.
Breukink,E., van Heusden,H.E., Vollmerhaus,P.J., Swiezewska,E., Brunner,L., Walker,S., Heck,A.J., and de,K.B. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J. Biol. Chem. 278, 19898-19903.
Chen,L., Walker,D., Sun,B., Hu,Y., Walker,S., and Kahne,D. (2003). Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc. Natl. Acad. Sci. U. S. A 100, 5658-5663.
Di,B.M., Dijkstra,A., Stuber,D., Keck,W., and Gubler,M. (1996). The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett. 392, 184-188.
Di Guilmi,A.M., Dessen,A., Dideberg,O., and Vernet,T. (2002). Bifunctional penicillin-binding proteins: focus on the glycosyltransferase domain and its specific inhibitor moenomycin. Curr. Pharm. Biotechnol. 3, 63-75.
Doern,G.V. and Brown,S.D. (2004). Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000-01. J. Infect. 48, 56-65.
Furuya,E.Y. and Lowy,F.D. (2006). Antimicrobial-resistant bacteria in the community setting. Nat. Rev. Microbiol. 4, 36-45.
Ghuysen,J.M. (1991). Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45, 37-67.
Ghuysen,J.M. (1994). Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 2, 372-380.
Goffin,C. and Ghuysen,J.M. (1998). Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079-1093.
Goffin,C. and Ghuysen,J.M. (2002). Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev. 66, 702-38, table.
Goldman,R.C., Baizman,E.R., Branstrom,A.A., and Longley,C.B. (2000). Differential antibacterial activity of moenomycin analogues on gram-positive bacteria. Bioorg. Med. Chem. Lett. 10, 2251-2254.
Guan,Z., Breazeale,S.D., and Raetz,C.R. (2005). Extraction and identification by mass spectrometry of undecaprenyl diphosphate-MurNAc-pentapeptide-GlcNAc from Escherichia coli. Anal. Biochem. 345, 336-339.
Hasper,H.E., Kramer,N.E., Smith,J.L., Hillman,J.D., Zachariah,C., Kuipers,O.P., de,K.B., and Breukink,E. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313, 1636-1637.
Henriques,A.O., Glaser,P., Piggot,P.J., and Moran,C.P., Jr. (1998). Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28, 235-247.
Höltje,J.V. (1998). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181-203.
Kempin,U., Hennig,L., Welzel,P., Marzian,S., Mueller,D., and Fehlhaber,H.W., (1995). Introduction of a terminal hydroxyl group into the lipid part of a moenomycin-type transglycosylase inhibitor suppresses antibiotic activity. Tetrahedron 51, 8471–82.
Jones,R.N. (2001). Resistance patterns among nosocomial pathogens: trends over the past few years. Chest 119, 397S-404S.
Konings,W.N., Bisschop,A., Veenhuis,M., and Vermeulen,C.A. (1973). New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure. J. Bacteriol. 116, 1456-1465.
Lovering,A.L., de Castro,L.H., Lim,D., and Strynadka,N.C. (2007). Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315, 1402-1405.
Macheboeuf,P., Contreras-Martel,C., Job,V., Dideberg,O., and Dessen,A. (2006). Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30, 673-691.
Marzian,S., Happel,M, Wagner,U., Mueller,D., Welzel,P., and Fehlhaber,H.W., (1994). Moenomycin A: reactions at the lipid part. New structure–activity relations. Tetrahedron 50, 5299–308.
Massova,I. and Mobashery,S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42, 1-17.
Morlot,C., Noirclerc-Savoye,M., Zapun,A., Dideberg,O., and Vernet,T. (2004). The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol. Microbiol. 51, 1641-1648.
Nanninga,N. (1998). Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 110-129.
Park,W. and Matsuhashi,M. (1984). Staphylococcus aureus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins. J. Bacteriol. 157, 538-544.
Pepin,J., Saheb,N., Coulombe,M.A., Alary,M.E., Corriveau,M.P., Authier,S., Leblanc,M., Rivard,G., Bettez,M., Primeau,V., Nguyen,M., Jacob,C.E., and Lanthier,L. (2005). Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin. Infect. Dis. 41, 1254-1260.
Rood,J.I. and Cole,S.T. (1991). Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55, 621-648.
Schaller,K., Holtje,J.V., and Braun,V. (1982). Colicin M is an inhibitor of murein biosynthesis. J. Bacteriol. 152, 994-1000.
Schneider,T., Senn,M.M., Berger-Bachi,B., Tossi,A., Sahl,H.G., and Wiedemann,I. (2004). In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol. Microbiol. 53, 675-685.
van,D., V, Sijbrandi,R., Kol,M., Swiezewska,E., de,K.B., and Breukink,E. (2007). Transmembrane transport of peptidoglycan precursors across model and bacterial membranes. Mol. Microbiol. 64, 1105-1114.
Van Heijenoort,J. (1998). Assembly of the monomer unit of bacterial peptidoglycan. Cell Mol. Life Sci. 54, 300-304.
Van Heijenoort,J. (2001). Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11, 25R-36R.
Van Heijenoort,J. (2001). Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 18, 503-519
Van Heijenoort,Y., Derrien,M., and Van,H.J. (1978). Polymerization by transglycosylation in the biosynthesis of the peptidoglycan of Escherichia coli K 12 and its inhibition by antibiotics. FEBS Lett. 89, 141-144.
Van Heijenoort,Y., Gomez,M., Derrien,M., Ayala,J., and van,H.J. (1992). Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J. Bacteriol. 174, 3549-3557.
Van Heijenoort,Y., Leduc,M., Singer,H., and Van,H.J. (1987). Effects of moenomycin on Escherichia coli. J. Gen. Microbiol. 133, 667-674.
Van Nieuwenhze,M.S., Mauldin,S.C., Zia-Ebrahimi,M., Winger,B.E., Hornback,W.J., Saha,S.L., Aikins,J.A., and Blaszczak,L.C. (2002). The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. J. Am. Chem. Soc. 124, 3656-3660.
Vogel,S., Stembera,K., Hennig,L., Findeisen,M., Giesa,S., and Welzel,P. (2001). Moenomycin analogs with long-chain amine lipid parts from reductive amination. Tetrahedron 57, 4147–60.
Walsh,C.T. (1993). Vancomycin resistance: decoding the molecular logic. Science 261, 308-309.
Walsh,C.T., Fisher,S.L., Park,I.S., Prahalad,M., and Wu,Z. (1996). Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem. Biol. 3, 21-28.
Welzel,P., Kunisch,F., Kruggel,F., Stein,H., Scherkenbeck,J., and Hiltmann,A. (1987). Moenomycin A: minimum structural requirements for biological activity. Tetrahedron 43, 585–98.
Welzel,P., Wietfeld,B., Kunisch,F., Schubert,T., Hobert,K., Duddeck,H., Müller,D., Huber,G., Maggio,J.E., and Williams,D.H. (1983). Moenomycin A: further structural studies and preparation of simple derivatives. Tetrahedron 39, 1583–1591.
Welzel,P., Witteler,F.J., Müller,D., and Riemer,W. (1981). Structure of the antibiotic moenomycin A. Angew. Chem. Int. Ed 20, 121–123.
Zehl,M., Pittenauer,E., Rizzi,A., and Allmaier,G. (2006). Characterization of moenomycin antibiotic complex by multistage MALDI-IT/RTOF-MS and ESI-IT-MS. J. Am. Soc. Mass Spectrom. 17, 1081-1090.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28705-
dc.description.abstract抗生素的普遍使用已經造成細菌嚴重的抗藥性問題。其中,具有甲氧苯青黴素(methicillin)抗藥性的金黃葡萄球菌(S. aureus),以及具有萬古黴素(vancomycin)抗藥性的腸球菌(enterococci)和困難腸梭菌(C. difficile),均已對大多數的抗生素具有抗藥性,對人類的健康造成了嚴重的威脅。因此,新型抗生素的研發著實是刻不容緩。
在這份研究中,我們著重在盤尼西林結合蛋白(Penicillin-binding protein) ,並建立了一個篩選盤尼西林結合蛋白抑制物的全新平台。盤尼西林結合蛋白是細菌細胞壁成分中胜肽聚糖(peptidoglycan,亦稱作胞壁質)的合成是不可或缺的,因此可作為抗生素研發的標的之一。A種類的盤尼西林結合蛋白是一個同時具有轉糖基酶(transglycosyalse)與轉胜酶(transpeptidase)雙重功能的蛋白。目前細菌普遍對乙內醯胺類(β-lactam)等針對轉胜酶活性的抗生素已有很普遍的抗藥性,因此轉糖基酶提供了另一可作為新型抗生素研發的潛在標的。
我們首先表現以及純化困難腸梭菌(C. difficile)與產氣莢膜梭狀芽胞桿菌(C. perfrigens)的盤尼西林結合蛋白,並透過偏極光分析法來探討這兩種重組盤尼西林結合蛋白對moenomycin的親合性。我們首先利用薄膜層析法與帶有螢光之lipid II來分析固定化盤尼西林結合蛋白之轉糖基酶活性。再者,固定化之盤尼西林結合蛋白具有與轉糖基酶抑制物moenomycin結合的能力,藉由基質輔助雷射脫附游離飛行時間質譜(MALDI TOF mass spectrometry)可以判定與盤尼西林結合蛋白結合的小分子,並利用96孔多孔盤研究其最小抑制濃度(MIC)。這個平台為篩選可能之轉糖基酶或轉胜酶抑制物提供了一個便捷的管道。
另一方面,我們利用生物合成以及管住層析法可以順利製備出豪克等級量的lipid II,因此為建立有關轉糖基酶對lipid II活性方面的分析方法提升了不少便利性。
zh_TW
dc.description.abstractThe widespread use of antibiotics has generated serious drug resistance problems. These problems are more serious in hospitals and nursing home where the weak patients often need sustained treatment of antibiotics and thus are easily colonized with drug-resistant bacteria. Among them, methicillin-resistant Staphylococcus aueus, vancomycin-resistant enterococci, and Clostridium difficile, which are resistant to most antibiotics, have posted serious threats to public health. There is an unmet medical need to novel and new generation of antibiotics.
Herein, we focused on penicillin-binding protein (PBPs) and developed a novel assay platform to facilitate identification of potential PBP inhibitors. Penicillin-binding proteins (PBPs) are essential for peptidoglycan (also called murein) biosynthesis and hence are one of the drug targets for antibiotics development. Class A PBPs are bifunctional proteins that have both transglycosylase and transpeptidase activity. Since the resistance against several β-lactam antibiotics that are targeting transpeptidase activity of class A PBPs has emerged, the transglycosylation represents a new target for potential therapeutics.
As the first step, the PBPs from C. difficile and C. perfrigens were expressed and purified. The moenomycin binding activities to these two recombinant proteins were characterized using fluorescence polarization assay with fluorescent moenomycin. The transglysosylase activity of immobilized PBPs with fluorescent lipid II was analyzed by TLC analysis. A novel assay platform was designed so that immobilized PBPs is able to specifically ”fish out” transglycosylase inhibitors such as moenomycin or transglycosylase substrate, lipid II. The bound moenomycin can be easily identified using MALDI analysis and exerted their MIC activity in a 96-well microtiter plate. Thus this novel platform can be used to facilitate the identification of potential inhibitors for transglycosylase and transpeptidase.
On the other hand, the biosynthesis of lipid II was realized and further purified by short pass chromatography, therefore milligram quantities of lipid II can be easily obtained. This can facilitate the development of lipid II-based assay of transglycosylase.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:18:33Z (GMT). No. of bitstreams: 1
ntu-96-R94b46022-1.pdf: 1316693 bytes, checksum: 447a56b4f7884d2f37b4df789e54403f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAcknowledgement I
Chinese abstract II
English abstract III
Table of contents IV
Figures VII
List of abbreviations IX
Chapter 1. INTRODUCTION 1
1. The emergence of antibiotics resistance 1
2. Clostridium 3
C. perfringens 3
C. difficile 4
3. Three stages of peptidoglycan biosynthesis 5
4. Penicillin-Binding-Protein (PBP) 7
5. Moenomycin 8
Chapter 2. MATERIALS and METHODS 11
Materials 11
Methods 11
1.Cloning of PBP expression vectors 11
Polymerase chain reaction 12
DNA electrophoresis 13
DNA purification from agarose gel 13
DNA ligation 14
Preparation of competent cell 14
Transformation 14
Plasmid preparation 15
2.Protein expression and extraction 15
3.Protein purification by nickel affinity chromatography 16
4.Protein analysis by sodium dodecyl sulfate-
Polyacrylamide gel electrophoresis(SDS-PAGE) 17
5.Western blotting 17
6.Protein analysis by proprietary fluorescent dye, vista-
green 18
7.Determination of protein concentration 18
8.Measurement of moenomycin binding by Fluorescent
Polarization (FP) assay 19
9.Immobilization of his-tagged protein on Ni2+ magnetic
nanoparticles 19
10.Detection of transglycosylase activity of immobilized
PBP with fluorescein-labelled lipid II using TLC
analysis 20
11.Elution of moenomycin from immobilized his-tagged
protein 20
12.Detection of moenomycin by Matrix-assisted Laser
Desorption Ionization mass spectrometry (MALDI) 21
13.Determination of minimum inhibitory concentration (MIC) 21
14.Synthesis and purification of the substrate of PBPs,
lipid II 22
Preparation of Micrococcus flavus vesicles 22
Lipid II were synthesized with membrane vesicles23
Chapter 3. RESULTS and DISCUSSION 24
1.Characterization of Penicillin-binding proteins from
Clostridium
24
1.1 Expression and purification of Clostridium difficile
PBP1b and Clostridium perfrigens PBP1A/1B using pET-
15b vector 24
1.2 Moenomycin binding of recombinant PBPs of C. difficile
and C. perfrigens 25
2.Immobilization of PBPs using SNAP technology 25
3.Immobilization of PBPs using Ni2+ magnetic nanoparticles 26
4.Detection of transglycosylase activity of immobilized
PBPs in TLC analysis 27
5.MALDI analysis of moenomycin that binds to immobilized
PBPs on magnetic nanoparticles
28
5.1 Optimization of MALDI analysis for moenomycin detection 28
5.2 Detection limit of moenomycin using MALDI analysis 29
5.3 Detection of moenomycin that can bind to immobilized
PBPs 29
5.4 Detection of lipid II that can bind to immobilized PBPs 30
6.MIC determination of moenomycin that binds to mmobilized
PBPs on magnetic nanoparticles 31
Chapter 4. CONCLUSION 32
REFERENCES 35
dc.language.isozh-TW
dc.subject盤尼西林結合蛋白zh_TW
dc.subjectlipid IIen
dc.subjectpenicillin-binding proteinen
dc.subjectMALDIen
dc.subjectmoenomycinen
dc.title建立一個利用固定化盤尼西林結合蛋白之分析平台以篩選可能之抗生素zh_TW
dc.titleAn Assay Platform to Identify Potential Antibiotics with Immobilized Penicillin-binding Proteinsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor鄭婷仁
dc.contributor.oralexamcommittee鄭偉杰,馬徹
dc.subject.keyword盤尼西林結合蛋白,zh_TW
dc.subject.keywordpenicillin-binding protein,moenomycin,lipid II,MALDI,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved