請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28700完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Meng-Tze Chen | en |
| dc.contributor.author | 陳孟澤 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:18:16Z | - |
| dc.date.available | 2012-05-11 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | [1] Bahr M, Bonhoeffer F., Perspectives on axonal regeneration in the mammalian CNS. Trend Neurosci. 17: 473-79, 1994
[2] Yamagata, T., Saito, H., Habuchi, O., and Suzuki, S., Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243: 1523-35, 1968 [3] Vikas P., Rahul R., Ishan C., Carlos J. B., Kevin P. and Ram S., Biochemical characterization of the chondroitinase ABC I active site. Biochem. J. 390: 395-405, 2005 [4] Bradbury EJ, Moon LD. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416: 636-40, 2002 [5] Ikegami T, Nakamura M. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur J Neurosci. 22: 3036-46, 2006 [6] W.J. Alilain et al., Post-lesion treatment of the phrenic nucleus with ChABC reduces CSPGs, promotes sprouting of these fibers and restores function to the hemidiaphragm. Soc. Neurosci. Abstr., abstract 720.7, 2006 [7] Sarah A. B. and Jerry S., The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol. 1: 120-7, 2007 [8] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Clin. Plast. Surg. 26: 617-28, 1999 [9] C.L.A.M. Vleggeert-Lankamp, G.C.W. de Ruiter, J.F.C. Wolfs. Pores in synthetic nerve conduits are beneficial to regeneration. J Biomed Mater Res. 80: 965-82, 2006 [10] Rafael A., Bruce H., and Susan S., An overview of polylactides as packaging materials. Macromol. Biosci., 4: 835-64, 2004 [11] Hartmann M. H., High molecular weight polylactic acid polymers, Biopolymers from Renewable Resources, 1st edition, Springer-Verlag Berlin Heidelberg, Berlin, p. 367-411, 1998 [12] Vert M, Li S, Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. Journal of Controlled Release 16: 15-26, 1991 [13] Srinivasan C., Katare Y. K., Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J Microenca. 22: 127-38, 2005 [14] Francis J. K., Matthew H. W. T. Application of Chitosan-Based Polysaccharide Biomaterial in Cartilage Tissue Engineering: a Review. Biomaterials 21: 2589-98, 2000 [15] Illum L., Chitosan and its use as a pharmaceutical excipient. Pharm Res 159: 1326-31, 1998 [16] Kas H. S., Chitosan: properties, preparations and application to microparticulate system. J Microencap 146: 689-711, 1997 [17] Francis J. K., Matthew H. W. T., Application of chitosan-based polysaccharide biomaterial in cartilage tissue engineering: a Review. Biomaterials 21: 2589-98, 2000 [18] Tabata Y., Ikada Y., Protein release from gelatin matrices. Advanced Drug Delivery Reviews 31: 287-301, 1998 [19] Ciardelli G., Chiono V., Materials for peripheral nerve regeneration. Macromol. Biosci. 6: 13-26, 2006 [20] Khan A. Y., Talegaonkar S., Iqbal Z., Ahmed F. J., and Khar R. K., Multiple emulsions: an overview. Current Drug Delivery 3: 429-43, 2006. [21] Tamber H., Johansen P., Merkle H. P., Gander B., Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Advanced Drug Delivery Reviews 57: 357-76, 2005 [22] Cleland J.L., Jones A.J.S., Stable formulations of recombinant human growth hormone and interferon-g for microencapsulation in biodegradable microspheres, Pharm. Res. 13: 1464-75, 1996 [23] Raghuvanshi R.S., Ganga S., Misra A., Mehta S., Stabilisation of tetanus toxoid against dichloromethane, Control Release Bioact. Mater. 23: 859- 60, 1996 [24] Lee E. S., Keun-Hong Park K. H., Kang D., Park I. S., Min H. Y., Lee D. H., Kim S., Kim J. H., Na K., Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres. Biomaterials 28: 2754-62, 2007 [25] Arakawa T., Kita Y., Carpenter J.F., Protein–solvent interactions in pharmaceutical formulations, Pharm. Res. 8: 285-91, 1991 [26] Alonso M.J., Gupta R.K., Min C., Siber G.R., Langer R., Biodegradable microspheres as controlled-release tetanus toxoid delivery systems, Vaccine 12: 299-306, 1994 [27] Johansen P., Tamber H., Merkle H.P., Gander B., Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alkylated PLA/PLGAs, Eur. J. Pharm. Biopharm. 47: 193-201, 1999 [28] Zhu G., Mallery S.R., Schwendeman S.P.. Stabilisation of proteins encapsulated in injectable poly(lactide-co-glycolide), Nat. Biotechnol. 18: 52-7, 2000 [29] Hallas-Mfhler K., Petersen K., Schlichtkrull J., Crystalline and amorphous insulin–zinc compounds with prolonged action, Science 116: 394-8, 1952. [30] Huang W. C., Kuo W. C., Cherng J. H., Hsu S. H., Chen P. P., Huang S. H., Huang M. C., Liu J. C., Cheng H.. Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury, Biochemical and Biophysical Research Communications 349: 963-68, 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28700 | - |
| dc.description.abstract | 脊髓受傷時,被活化的星狀細胞會移形至受傷處並分泌細胞外基質,這些細胞外基質被稱為疤痕組織,會阻礙新生的神經細胞與軸突的生長並阻礙神經修復。軟骨速分解酵素(Chondroitinase ABC, ChABC) 已被證實可分解疤痕組織中醣蛋白結構的醣鏈,有助於神經細胞與軸突的向外生長,產生功能性的回覆並幫助神經修復。有鑒於ChABC的不穩定,並且需要長時間使用ChABC才可有效分解醣鏈,因此探討以固定化酵素以及雙層乳化法維持並延長ChABC活性並將設計孔徑大小不同的神經導管作為固定化之材料。
本研究利用幾丁聚醣以及明膠設計出孔隙大小不同的神經導管,幾丁聚醣神經導管的孔徑大小為100~160μm,而幾丁聚醣/明膠神經導管孔徑大小為20~40μm。以此二種神經導管做為固定化之材料,並將ChABC以離子鍵結以及共價鍵結進行固定化。實驗結果顯示,ChABC以幾丁聚醣神經導管為材料透過離子鍵結進行固定化可得0.07 U/mg,並且48小時後仍可維持48% 的活性。顯示固定化酵素確實有助於維持ChABC活性。以雙層乳化法將ChABC包覆於PDLLA製作微球體並進行控制釋放。7天內所釋放出的ChABC活性均小於0.0026 U/ml。以nanogold(10 nm)、polylysine (Mw:500-2000)與polylysine (Mw:20000 -30000)為安定劑均可提高ChABC活性,其中以polylysine (Mw:500-2000)保護ChABC之效果最佳,7天後活性可達到0.0162 U/ml。顯示利用雙層乳化法並搭配適當的保護劑所製作之微球體,確實可達到控制釋放的效果,使ChABC活性得以延長。 | zh_TW |
| dc.description.abstract | In spinal cord injury, activated astrocytes migrated to the injury site and secreted the extracellular matrix (ECM), called scar tissue. The scar tissue impeded the re-growth of neurons and axon and inhibited nerve regeneration. It had proved that Chondroitinase ABC can digest the polysaccharide of proteoglycan in scar tissue, promoted the re-growth of neuron, axon and behavior recovery. In order to improve the stability of chondroitinase ABC, and maintain the activity of chondroitinase ABC, the feasibility of using immobilized chondroitinase ABC on nerve conduit and encapsulated chondroitinase ABC in PDLLA microsphere were studied further in this work.
Chitosan and gelatin were used to fabricate the conduit with different pore diameter. The pore diameter of chitosan conduit was 100-160 μm, and the pore diameter of chitosan/gelatin conduit was 20-40μm. Chondroitinase ABC was immobilized on surface of the conduit by ionic binding and covalent binding. The activity of chondroitinase ABC immobilized on chitosan conduit by ionic binding was 0.07 U/mg, and the activity recovery was 48% after 48 hours. The stability of the immobilized chondroitinase ABC was significantly improved. PDLLA microsphere was fabricated through double emulsion and controlled release of chondroitinase ABC. Activity of chondroitinas ABC released from microsphere without stabilizer was lower than 0.0026 U/ml during seven days. The results indicated that the microsphere made by double emulsion and added the optimal stabizer can increase the efficacy of the control release and the duration of chondroitinase ABC activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:18:16Z (GMT). No. of bitstreams: 1 ntu-96-R94548056-1.pdf: 2627509 bytes, checksum: 77000c2218a017e125724071d9acaeef (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 謝誌 …………………………………………………………………………………… I
摘要 ………………………………………………………………………………… II Abstract …………………………………………………………………………… III 目錄 …………………………………………………………………………………… V 圖目錄 …………………………………………………………………………… VIII 第一章 緒論……………………………………………………………………………1 1-1中樞神經系統與脊髓傷害…………………………………………………………1 1-2軟骨速分解酵素……………………………………………………………………3 1-3神經導管……………………………………………………………………………6 1-4分解性生醫材料……………………………………………………………………7 (1) 聚乳酸…………………………………………………………………………7 (2) 幾丁聚醣………………………………………………………………………9 (3) 明膠 …………………………………………………………………………11 1-5 固定化酵素………………………………………………………………………12 (1) 物理吸附法 …………………………………………………………………12 (2) 離子鍵吸附法 ………………………………………………………………12 (3) 共價鍵結法 …………………………………………………………………12 (4) 交連法 ………………………………………………………………………13 (5) 包埋法 ………………………………………………………………………13 1-6 多重乳化法 …………………………………………………………………… 13 第二章 研究動機與目的 ……………………………………………………………18 第三章 實驗材料與方法 ……………………………………………………………20 3-1 實驗藥品 …………………………………………………………………………20 3-2 實驗儀器 …………………………………………………………………………21 3-3 實驗溶液配製 ……………………………………………………………………22 3-4 實驗方法 …………………………………………………………………………24 3-4-1 神經導管製備 ……………………………………………………………24 3-4-2 離子鍵固定法……………………………………………………………24 3-4-3 共價鍵結法………………………………………………………………25 3-4-4 聚乳酸微球體製備 ………………………………………………………26 3-4-5 Ch ABC 活性測量法 …………………………………………………26 3-4-6 固定化Ch ABC之活性測量…………………………………………27 3-4-7 微球體Ch ABC之活性測量…………………………………………27 3-4-8 胎牛血清蛋白於聚乳酸微球體之控制釋放…………………………28 3-4-9 微球體Ch ABC於CSC solution中所產生不飽和雙醣量………………28 3-4-10 掃描式電子顯微鏡觀測………………………………………………28 3-4-11 共軛焦顯微鏡觀測……………………………………………………28 第四章 結果與討論 …………………………………………………………………30 4-1 幾丁聚醣/明膠導管性質測量 …………………………………………………30 4-1-1 中和分析 ………………………………………………………………30 4-1-2 孔隙直徑分析 …………………………………………………………31 4-2 固定化 Chondroitinase ABC ……………………………………………………36 4-2-1 離子鍵固定法 …………………………………………………………36 4-2-2 共價鍵結法 ……………………………………………………………36 4-2-3 酵素穩定性 ……………………………………………………………37 4-3 以聚乳酸微球體包覆 Chondroitinase ABC …………………………………… 41 4-3-1 微球體分析 ……………………………………………………………41 4-3-2 Bovine Serum Albumin 釋放……………………………………………41 4-3-3 stabilizer 對chondroitinase ABC 之分析……………………………42 第五章 結論…………………………………………………………………………49 第六章 參考文獻 ……………………………………………………………………51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 微球體 | zh_TW |
| dc.subject | 酵素固定化 | zh_TW |
| dc.subject | 神經導管 | zh_TW |
| dc.subject | 軟骨素分解酵素 | zh_TW |
| dc.subject | chondroitinase ABC | en |
| dc.subject | chitosan | en |
| dc.subject | nerve conduit | en |
| dc.subject | enzyme immobilization | en |
| dc.subject | microsphere | en |
| dc.title | 利用幾丁聚醣支架與聚乳酸微球體進行軟骨素分解酵素之控制釋放 | zh_TW |
| dc.title | The Control Release of Chondroitinase ABC in Chitosan based Scaffold and PDLLA Microsphere | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭宏志,林文貞,江鴻生 | |
| dc.subject.keyword | 軟骨素分解酵素,幾丁聚醣,神經導管,酵素固定化,微球體, | zh_TW |
| dc.subject.keyword | chondroitinase ABC,chitosan,nerve conduit,enzyme immobilization,microsphere, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
