Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28685
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 盧中仁 | |
dc.contributor.author | Song-Ting Huang | en |
dc.contributor.author | 黃頌庭 | zh_TW |
dc.date.accessioned | 2021-06-13T00:17:24Z | - |
dc.date.available | 2011-08-09 | |
dc.date.copyright | 2011-08-09 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-05 | |
dc.identifier.citation | [1] Srinivasan, M. G. and France, D. M., 1985, “Nonuniqueness in Steady-State Heat-Transfer in Prestressed Duplex Tubes – Analysis and Case-History,” Journal of Applied Mechanics-Transactions of the ASME, 52(2), pp.257-262.
[2] Li, C. and Barber, J. R., 1998, “Thermoelastic Stability of Duplex Heat Exchanger Tubes,” International Journal of Mechanical Sciences, 40(6), pp. 575-588. [3] Li, N. Y. and Barber, J. R., 1991, “Thermoelastic Instability in Planar Solidification,” International Journal of Mechanical Sciences, 33(12), pp. 945-959. [4] Yigit, F. and Barber, J. R., 1994, “Effect of Stefan Number on Thermoelastic Instabilities in Unidirectional Solidification,” International Journal of Mechanical Sciences, 36(8), pp. 707-723. [5] Ben-Zion, Y., 2001, “Dynamic Ruptures in Recent Models of Earthquake Faults,” Journal of the Mechanics and Physics of Solids, 49(9), pp.2209-2244. [6] Lee, K. J. and Barber, J. R., 1994, “An Experimental Investigation of Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes under a Drag Brake Application,” Journal of Tribology-Transactions of the ASME, 116(3), pp. 409-414. [7] Kinkaid, N. M., O’Reilly, O. M., and Papaclopoulos, P., 2003, “Automotive Disc Brake Squeal,” Journal of Sound and Vibration, 267(1), pp. 105-166. [8] Quyang, H., Cao, Q., Mottershead, J. E., and Treyde, T., 2003, “ Vibration and Squeal of a Disc Brake: Modelling and Experimental Results,” Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 217(D10), pp. 867-875. [9] Kao, T. K., Richmond, J. W., and Douarre, A., 2000, “Brake Disc Hot Spotting and Thermal Judder: An Experimental and Finite Element Study,” International Journal of Vehicle Design, 23(3-4), pp. 276-296. [10] Lee, K. J., and Brooks, F. W., 2003, “Hot Spotting and Judder Phenomena in Aluminum Drum Brakes,” Journal of Tribology-Transactions of the ASME, 125(1), pp. 44-51. [11] Gao, C. H., Huang, J. M., Lin, X. Z., and Tang, X. S., 2007, “Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling,” Journal of Tribology-Transactions of the ASME, 129(3), pp. 536-543. [12] Bhushan, B., 1987, “Magnetic Head-Media Interface Temperatures .2. Application to Magnetic Tapes,” Journal of Tribology-Transactions of the ASME, 109(2), pp. 252-256. [13] Phipps, P. B. P. 1990, “Measurements of the Wear of a Thin-Film Disk,” in 1990 International Magnetics Conf ( 1990 Intermag ), Brighton, England. pp. 2496-2498. [14] Afferrante, L. and Ciavarella, M., 2008, “Thermo-Elastic Dynamic Instability (TEDI) – a Review of Recent Results,” Journal of Engineering Mathematics, 61(2-4), pp. 285-300. [15] Barber, J. R., 1978, “Contact Problems Involving a Cooled Punch,” Journal of Elasticity, 8(4), pp. 409-423. [16] Panek, C., 1980, “A Thermomechanical Example of Auto-Oscillation,” Journal of Applied Mechanics-Transactions of the ASME, 47(4), pp. 875-878. [17] Zhang, R. G. and Barber, J. R., 1990, “Effect of Material Properties on the Stability of Static Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 57(2), pp. 365-369. [18] Yeo, T. and Barber, J. R., 1994, “Stability of a Semiinfinite Strip in Thermoelastic Contact with a Rigid Wall,” in Symposium on Multiphase Elasticity and the Dundurs Parameters, at the 12th US National Congress of Theoretical and Applied Mechanics, Seattle, Wa. pp. 553-567. [19] Li, C. and Barber, J. R., 1997, “Stability of Thermoelastic Contact of Two Layers of Dissimilar Materials,” Journal of Thermal Stresses, 20(2), pp. 169-184. [20] Olesiak, Z. S. and Pyryev, Y. A., 1996, “Transient Response in a One-Dimensional Model of Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 63(3), pp. 575-581. [21] Barber, J. R., Dundurs, J., and Comninou, M., 1980, “Stability Considerations in Thermoelastic Contact,” Journal of Applied Mechanics, Transactions ASME, 47(4), pp. 871-874. [22] Comninou, M. and Dundurs, J., 1980, “On the Possibility of History Dependence and Instabilities in Thermoelastic Contact,” Journal of Thermal Stresses, 3(3), pp.427-433. [23] Pelesko, J. A., 1999, “Nonlinear Stability Considerations in Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 66(1), pp. 109-116. [24] Pelesko, J. A., 2001, “Nonlinear Stability, Thermoelastic Contact, and the Barber Condition,” Journal of Applied Mechanics-Transactions of the ASME, 68(1), pp. 28-33. [25] Quinn, D. D. and Pelesko, J. A., 2002, “Generic Unfolding of the Thermoelastic Contact Instability,” International Journal of Solids and Structures, 39(1), pp. 145-157. [26] Barber, J. R., 1981, “Stability of Thermoelastic Contact for the Aldo Model,” Journal of Applied Mechanics-Transactions of the ASME, 48(3), pp. 555-558. [27] Afferrante, L. and Ciavarella, M., 2004, “The Thermoelastic Aldo Contact Model with Frictional Heating,” Journal of the Mechanics and Physics of Solids, 52(3), pp.617-640. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28685 | - |
dc.description.abstract | 熱彈問題在許多領域有重要的應用。傳統的熱阻定義(有間隙時熱阻為無限大,接觸時熱阻為零)可能導致靜態熱彈問題的解不存在。為了處理這個問題,Barber提出了隨著接觸面間壓力或間隙而連續變化熱阻。應用這個熱阻觀念,Barber分析了一個極簡化的粗糙表面模型–Aldo模型,並得到一些接觸面間熱彈特性的通則。Aldo模型由兩根柱體阻成,然而,Barber的分析中並未考慮這些柱體的力學特性,例如阻尼、波傳速度等。本論文探討這些特性對Aldo模型熱彈穩定性的影響。為此,首先由單一柱體的受力-變形關係探討Aldo模型平衡解的分岐行為。接著推導統御方程式,由在平衡解附近線性化系統的特徵值判別其穩定性,並和數值積分的結果相驗證。最後探討不同系統參數值下的分歧行為和穩定,並和Barber的結果相比對。我們發現柱體的力學特性會影響Aldo模型的穩定性,Barber的結果相當於柱體具有高阻尼時的情形。 | zh_TW |
dc.description.abstract | Thermoelasticity has important applications in different fields. Traditionally, the thermal resistance is defined as infinite between non-contact surfaces and zero for contact surfaces. With this kind of thermal resistance, a static thermoelastic problem may not have solutions. To overcome this difficulty, Barber proposed a new thermal resistance concept: the thermal resistance depends continuously on the pressure or gap between two interacting surfaces. Using this new thermal resistance, Barber analyzed a simplified surface model, the Aldo model, and obtained some general properties regarding the thermoelastic interactions between two contact surfaces. The Aldo model is composed of two elastic rods. However, Barber did not consider the effects of important mechanical properties of the rods, e.g. damping and wave velocity. This thesis aims to study the effects of the mechanical properties of the rods on the stability of the Aldo model. To this end, we first investigated the bifurcation of the Aldo model on the basis of the load-deflection curve of a single rod. Then, we derived the nonlinear governing equations of the Aldo system. The stability of an equilibrium solution was determined by the eigenvalues of the assoicated linearized system. The results were verified using numerical integration. Finally, we studied the bifurcation behavior and stability of the Aldo model with the variation of parameters, and compared the results with those of Barber’s. Results of this study indicate that mechanical properties of the rods significantly influence the stability of the Aldo model. Barber’s results correspond to the cases with high damping values. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:17:24Z (GMT). No. of bitstreams: 1 ntu-100-R98522535-1.pdf: 2173337 bytes, checksum: 296567c4b33e0673dbb54bff16d40c68 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 第一章 導論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究方法 4 第二章 平衡分析 6 2-1 單一柱體 6 2-1-1 熱阻與熱變形 7 2-1-2 單一柱體受力和變形關係 10 2-1-3 Aldo模型平衡解-Barber的分析 14 2-2 Aldo模型的分歧行為 20 2-2-1 P-δ曲線的特性 20 2-2-2 g-δ曲線的特性 25 2-2-3 由P-δ曲線討論平衡解分歧行為 27 第三章 穩定性分析 37 3-1 Barber的穩定性分析 37 3-2 統御方程式 42 3-2-1 單一柱體熱傳分析 42 3-2-2 單一柱體熱彈分析 44 3-2-3 Aldo模型統御方程式 48 3-2-4 特徵值 54 3-3 數值結果 56 第四章 結論 92 參考文獻 94 | |
dc.language.iso | zh-TW | |
dc.title | Barber邊界條件下Aldo模型的熱彈性穩定性分析 | zh_TW |
dc.title | Thermoelastic Stability of Aldo Model with Barber’s Condition | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳明新,伍次寅 | |
dc.subject.keyword | 熱彈穩定性, | zh_TW |
dc.subject.keyword | Barber,Aldo,Thermoelastic, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf Restricted Access | 2.12 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.