Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorTe-Wei Changen
dc.contributor.author張德威zh_TW
dc.date.accessioned2021-06-13T00:16:41Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation1 A. Duparre, M. Flemming, J. Steinert et al., 'Optical coatings with enhanced roughness for ultrahydrophobic, low-scatter applications,' Applied Optics 41 (16), 3294-3298 (2002).
2 W. Barthlott and C. Neinhuis, 'Purity of the sacred lotus, or escape from contamination in biological surfaces,' Planta 202 (1), 1-8 (1997).
3 R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry 28, 988-994 (1936).
4 A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces,' Transactions of the Faraday Society 40, 0546-0550 (1944).
5 L. M. Lacroix, M. Lejeune, L. Ceriotti et al., 'Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films,' Surface Science 592 (1-3), 182-188 (2005).
6 N. Zhao, J. Xu, Q. D. Xie et al., 'Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure,' Macromolecular Rapid Communications 26 (13), 1075-1080 (2005).
7 E. Hosono, S. Fujihara, I. Honma et al., 'Superhydrophobic perpendicular nanopin film by the bottom-up process,' Journal of the American Chemical Society 127 (39), 13458-13459 (2005).
8 D. Oner and T. J. McCarthy, 'Ultrahydrophobic surfaces. Effects of topography length scales on wettability,' Langmuir 16 (20), 7777-7782 (2000).
9 Neelesh A. Patankar, 'On the modeling of hydrophobic contact angles on rough surfaces,' Langmuir 19 (4), 1249-1253 (2003).
10 Joonwon Kim and Chang-Jin Kim, (Institute of Electrical and Electronics Engineers Inc., Las Vegas, NV, 2002), pp. 479-482.
11 R. Blossey and A. Bosio, 'Contact line deposits on cDNA microarrays: A 'twin-spot effect',' Langmuir 18 (7), 2952-2954 (2002).
12 A. Nakajima, K. Hashimoto, and T. Watanabe, 'Recent studies on super-hydrophobic films,' Monatshefte Fur Chemie 132 (1), 31-41 (2001).
13 S. L. Ren, S. R. Yang, and Y. P. Zhao, 'Nano-tribological study on a super-hydrophobic film formed on rough aluminum substrates,' Acta Mechanica Sinica 20 (2), 159-164 (2004).
14 T. N. Krupenkin, J. A. Taylor, T. M. Schneider et al., 'From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces,' Langmuir 20 (10), 3824-3827 (2004).
15 C. W. Extrand, 'Model for contact angles and hysteresis on rough and ultraphobic surfaces,' Langmuir 18 (21), 7991-7999 (2002).
16 L. C. Gao and T. J. McCarthy, 'Contact angle hysteresis explained,' Langmuir 22 (14), 6234-6237 (2006).
17 C. G. Furmidge, 'STUDIES AT PHASE INTERFACES .1. SLIDING OF LIQUID DROPS ON SOLID SURFACES AND A THEORY FOR SPRAY RETENTION,' Journal of Colloid Science 17 (4), 309-& (1962).
18 D. Quere, A. Lafuma, and J. Bico, 'Slippy and sticky microtextured solids,' Nanotechnology 14 (10), 1109-1112 (2003).
19 Aurelie Lafuma and David Quere, 'Superhydrophobic states,' Nature Materials 2 (7), 457-460 (2003).
20 C. C. Lee, Thin Film Optics and Coating Technology, 5 ed. (Yi Hsein, Publishing Co., Taipei, Taiwan, 2006).
21 G. R. J. Artus, S. Jung, J. Zimmermann et al., 'Silicone nanofilaments and their application as superhydrophobic coating,' Advanced Materials 18 (20), 2758-+ (2006).
22 B. G. Prevo, E. W. Hon, and O. D. Velev, 'Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells,' Journal of Materials Chemistry 17 (8), 791-799 (2007).
23 L. D. Laudua, Fluid Mechanics. (Addison-Wesley Inc., London, 1959).
24 Bo He, Neelesh A. Patankar, and Junghoon Lee, 'Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces,' Langmuir 19 (12), 4999-5003 (2003).
25 C. E. Reid, Chemical Thermodynamics. (McGraw-Hill Publishing Company, Singapore, 1990).
26 J. S. Rowlinson, Molecular Theory of Capillarity. (Oxford University Press, New York, 1982).
27 A. W. Adamson, Physical Chemistry of Surfaces. (John Wiley & Sons, Inc., New York, 1990).
28 J. Bico, C. Marzolin, and D. Quere, 'Pearl drops,' Europhysics Letters 47 (2), 220-226 (1999).
29 J. Goodman, Introduction to Fourier Optics. (McGraw-Hill, New York, 1996).
30 D.J. Griffiths, Introduction of electrodynamics. (Prentice Hall International, Englewood Saddle River, New Jersey, 1999).
31 T. Glaser, S. Schroter, H. Bartelt et al., 'Diffractive optical isolator made of high-efficiency dielectric gratings only,' Applied Optics 41 (18), 3558-3566 (2002).
32 L. H. Cescato, E. Gluch, and N. Streibl, 'HOLOGRAPHIC QUARTERWAVE PLATES,' Applied Optics 29 (22), 3286-3290 (1990).
33 P. Lalanne, S. Astilean, P. Chavel et al., 'Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,' Journal of the Optical Society of America a-Optics Image Science and Vision 16 (5), 1143-1156 (1999).
34 L. Lalanne, Artificial Media Optical Properties—Subwavelength Scale. (Marcel Dekker, Inc., New York, 2003).
35 P. Yeh, Optical Waves in Layered Media. (John Wiley & Sons, Inc., New York, 1991).
36 M. Born, Principles of Optics. (Cambridge University Press, UK, 2002).
37 T. K. Gaylord and M. G. Moharam, 'ANALYSIS AND APPLICATIONS OF OPTICAL DIFFRACTION BY GRATINGS,' Proceedings of the Ieee 73 (5), 894-937 (1985).
38 C. W. Extrand, 'Contact angles and hysteresis on surfaces with chemically heterogeneous islands,' Langmuir 19 (9), 3793-3796 (2003).
39 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 'Nanoimprint lithography,' Journal of Vacuum Science & Technology B 14 (6), 4129-4133 (1996).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28672-
dc.description.abstract經由此本論文的系列研究,周期性漸變奈米結構表面在理論及實驗方面均證實其結合抗反射和親疏水性質之可行性。雖然至今此結構製作在透明基板的性質並未明瞭,但是此一設計主要之應用方面包括太陽能電池及戶外顯示面板之封裝等皆是以透明基板為基礎,因此設計和製作一維奈米結構於玻璃基板上乃成為本論文之主軸。
在抗反射及親疏水性質中,分別利用嚴格耦合波理論(RCWA)模擬及數值分析來設計奈米結構之外形,之後藉由電子束微影(e-beam lithography)和反應離子蝕刻(RIE)技術來定義以及轉印圖形至玻璃基板上,製程步驟完成後,經由量測證實此一設計同時具有抗反射及親疏水兩大性質。
除此之外在本研究中,發現許多有趣而且至今尚未完全明瞭之親疏水現象,包括異質性效應、非等向性現象和局部疏水性質,在此論文中將分析及驗證形成這些現象之初步原因,根據討論可知結構之幾何性質對液體之接觸角和擴散性質會有影響,此一概念發現在軟性電子中噴墨製程技術的液滴控制上將可有相當程度的應用潛力。
zh_TW
dc.description.abstractAfter a series of research, feasibility of using periodic gradient nano-structured surface to integrate both the anti-reflection and the hydrophobic properties was proved both theoretically and experimentally. Up to this point, the underlying reason for these properties on transparent material is not completely clear even though most of the significant applications of this design are based on transparent materials, which includes package of solar cells and outdoor display panel, etc. Design and fabrication of one-dimensional nano-structures on glass substrate was thus adopted at the main platform to pursue basic understandings.
Rigorous coupled-wave analysis (RCWA) and numerical computation were applied here to design the desired structure for anti-reflection and hydrophobic-hydrophilic properties respectively. Then definition and transferring of pattern are carried out by electron beam lithography and reactive ion etching (RIE) method respectively. After experimental confirmations, the newly designed structure was found to possess both anti-reflection and hydrophobic-hydrophilic properties.
Besides that, some interesting but not clearly understood phenomena of wetability including heterogeneous effect, anisotropic effect and localized hydrophobic state have been found, analyzed and verified. According to these discussions contact angle and spreading property of liquid can be affected by geometry of surface structures. This idea may have great potential in droplet controlling of inkjet printing technique in flexible electronics in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:16:41Z (GMT). No. of bitstreams: 1
ntu-96-R94525018-1.pdf: 5355188 bytes, checksum: 70a82d17c5eaf378bf1f55dcd48d9c02 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝 誌 i
摘 要 iii
Abstract iv
Content vi
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 5
1.2.1 Super-hydrophobic property 5
Lotus effect 6
Artificial super-hydrophobic surface 7
Applications for super-hydrophobic surface 8
Trends 10
1.2.2 Contact angle hysteresis 12
Furmidge’s equation 13
Measurements of contact angle hysteresis 15
Relationships between wetability state and hysteresis 16
1.2.3 Anti-reflection effect 17
Traditional thin-film anti-reflection coating 19
Anti-reflection sub-wavelength structured surface 20
1.2.4 Super-hydrophobic anti-reflection surface 23
1.3 Thesis organization 24
Chapter 2 Theory 25
2.1 Theory of hydrophilic and hydrophobic properties 25
2.1.1 Surface tension 25
Minimization of total surface energy 27
Laplace’s law 29
2.1.2 Wetability 31
Young’s equation 32
Proof of Young’s equation by calculating minimization of total surface energy 33
2.1.3 Wetability on binary structured surface 37
Wenzel’s model 38
Cassie-Baxter’s model 39
Discussion of Wenzel’s and Cassie-Baxter’s models 40
2.1.4 Wetability on sinusoidal structured surface 42
2.2 Sub-wavelength optics 46
2.2.1 Optical approaches for different scales 46
Scalar theory 46
Treatment of roughness at atomic level 46
Optical issue at sub-wavelength scale 47
2.2.2 Effective medium theory (EMT) 49
Zero-order EMT for 1-D periodic structure 50
Conditions of applying EMT on sub-wavelength structure 53
Characteristics of EMT 55
2.2.3 Sub-wavelength gratings for anti-reflection 56
Binary sub-wavelength gratings 56
Continuous-profile sub-wavelength gratings 62
Chapter 3 Simulation and Calculation 66
3.1 Preliminary design 66
3.2 Simulations of anti-reflection property by RCWA 66
3.2.1 Transmission spectrum of glass substrate without structure 67
3.2.2 The effect of changing the period of nano-structure 70
3.2.3 The effect of changing the depth of nano-structure 78
3.3 Wetability calculation 82
Chapter 4 Experiment and Discussion 85
4.1 Fabrication of transparent nano-structured surface 86
4.1.1 Pattern definition by electron beam lithography 86
Area effect in electron beam lithography 90
Results 92
4.1.2 Pattern transferring by dry etching 96
Results and discussion 99
4.2 Measurement 101
4.2.1 Measurement of wetability 101
Results and discussion 101
4.2.2 Measurement of anti-reflection property 105
Results and discussion 106
4.3 Analysis and verification 109
4.3.1 Heterogeneous effect 109
4.3.2 Anisotropic phenomenon 112
4.3.3 Localized hydrophobic state on hydrophilic material 117
Changing droplet size 118
Changing period 119
Changing depth 120
Summary 121
Chapter 5 Conclusion 122
Chapter 6 Future Work 124
Improvement of nano-structure fabrication 124
Further verification 124
Large area fabrication 125
Multi-Scaled nano-structure 126
Appendix I 128
The WKB Approximation 128
Reference 130
dc.language.isoen
dc.subject液滴控制zh_TW
dc.subject親疏水zh_TW
dc.subject抗反射zh_TW
dc.subject蓮花效應zh_TW
dc.subject奈米結構zh_TW
dc.subject電子束微影製程zh_TW
dc.subjectAnti-reflectionen
dc.subjectelectron beam lithographyen
dc.subjectLotus effecten
dc.subjectnano-structureen
dc.subjectSuper-hydrophobicen
dc.subjectdroplet controlen
dc.title抗反射及親疏水效應和一維奈米玻璃結構之互動分析與驗證zh_TW
dc.titleAnalysis and Performance Verification of One-Dimensional Nano-glass Structures Possessing Both Anti-reflective & Hydrophobic-Hydrophilic Propertiesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文中,管傑雄,葉吉田,李正中
dc.subject.keyword親疏水,抗反射,蓮花效應,奈米結構,電子束微影製程,液滴控制,zh_TW
dc.subject.keywordAnti-reflection,Super-hydrophobic,nano-structure,Lotus effect,electron beam lithography,droplet control,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
5.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved