Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28661
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃義侑
dc.contributor.authorMeng-Chiao Wuen
dc.contributor.author吳孟樵zh_TW
dc.date.accessioned2021-06-13T00:16:10Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation1. El-Aneed A., An overview of current delivery systems in cancer gene therapy, J. of Control. Rel. 94 (2004) 1-14.
2. Lungwitz U., Breunig M., Blunk T., Göpferich A., Polyethylenimine-based non-viral gene delivery systems, Eur. J. Pharma. Biopharma. 60 (2005) 247-266.
3. Hosseinkhani H., Tabata Y., Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells, J. Nanosci. Nanotechnol. 6 (2006) 2320-2328.
4. Rodrigues Y., Carrondo J.T. M., Alves M. P., Cruz E. P., Purification of retroviral vectors for clinical application: Biological implications and technological challenges, J. Biotechnol. 127 (2007) 520-541.
5. Rittner K., Schreiberl V., Erbs P., Lusky M., Targeting of adenovirus vectors carrying a tumor cell-specific peptide: in vitro and in vivo studies, Cancer Gene Ther. (2007) 1-10.
6. Okua N., Yamazakia Y., Matsuuraa M., Sugiyamaa M., Hasegawa M., Nango M., A novel non-viral gene transfer system, polycation liposomes, Adv. Drug Deliv. Rev. 52 (2001) 209–218.
7. Yamazaki Y., Nango M., Matsuura M., Hasegawa Y., Hasegawa M., Oku N., Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine, Gene Ther. 7 (2000) 1148–1155.
8. Kommareddy S., Amiji M., Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice, J. Pharm. Sci. (2006).
9. Boussif O., Lezoualc’H F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine, Proc. Natl. Acad. Sci. USA 92 (1995) 7297-7301.
10. Young S., Wong M., Tabata Y., Mikos A. G., Gelatin as a delivery vehicle for controlled release of bioactive molecules, J. Control. Rel. 109 (2005) 256-274.
11. Coester C. J., Langer K., Briesen H. V., Kreuter J., Gelatin nanoparticles by two step desolvation- a new preparation method, surface modification and cell uptake, J. Microencapsul. 17 (2000) 187-193.
12. Balthasar S., Michaelis K., Dinauer N., Briesen H. V., Kreuter J., Langer K., Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes, Biomaterials 26 (2005) 723-2732.
13. Zwiorek K., Kloeckner J., Wagner E., Coester C., Gelatin nanoparticles as a new and simple gene delivery system, J. Pharm. Pharmaceut. Sci. 7 (2004) 22-28.
14. Azarmi S., Huang Y., Chen H., McQuarrie S., Abrams D., Roa W., Finlay W. H., Niller G. G., Löbenberg R., Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells, J. Pharm. Pharmaceut. Sci. 9 (2006) 124-132.
15. Huh S. H., Do H. L., Lim H. Y., Kim D. K., Choi S. J., Song H., Kim N. H., Park J. K., Chang W. K., Chung H. M., Kim J. H., Optimization of 25 kDa linear polyethylenimine for efficient gene delivery, Biologicals (2006) 1-7.
16. Honoré I., Grosse S., Frison N., Favatier F., Monsigny M., Fajac I., Transcription of plasmid DNA: Influence of plasmid DNA/polyethylenimine complex formation, J. Control. Rel. (2005).
17. Kim W. J., Yockman J. W., Lee M., Jeong J. H., Kim Y. H., Kim S. W., Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis, J. Control. Rel. 106 (2005) 224-234.
18. Kunath K., Harpe V. A., Fischer D., Petersen H., Bickel U., Voigt K., Kissel T., Low- molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine, J. Control. Rel. 89 (2003) 113-125.
19. Kim Y. H., Park J. H., Lee M., Kim Y. H., Park T. G., Kim S. W., Polyethylenimine with acid-labile linkages as a biodegradable gene carrier, J. Control. Rel. 103 (2005) 209-219.
20. Harpe V. A., Petersen H., Li Y., Kissel T., Characterization of commercially available and synthesized polyethylenimines for gene delivery, J. Control. Rel. 69 (2000) 209-219.
21. Forrest L.M., Koerber T. J., Pack W. D., A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery, Bioconjugate Chem. 14 (2003) 934-940.
22. Fischer D., Bieber T., Li Y., Elsässer P. H., Kissel T., A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity, Pharm. Res. 16 (1999) 8.
23. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines, Anal. Biochem. 64 (1975) 284-288.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28661-
dc.description.abstract在基因治療的領域中,建立低毒性及高效率的基因傳送系統是相當重要的目標。本研究利用低分子量的聚乙二烯胺大量連接在明膠奈米微粒的表面,在不影響細胞毒性的情況下,提升奈米微粒的轉染效率。
無生物毒性的明膠奈米微粒為核心材料,以低分子量的聚乙二烯胺(MW 600)交聯於其表面上,增加其介面電位(42.47 mV)及對pH值的緩衝能力,藉以提昇明膠─聚乙二烯胺奈米微粒的穩定性。在確認明膠─聚乙二烯胺奈米微粒表面的氨基(amino group)濃度後,即可利用不同奈米顆粒及不同N/P下測試轉染的效率。實驗結果顯示接上分子量1.8k的聚乙二烯胺奈米微粒在N/P比值為30時,具有最好的轉染效率(2.12×104 RLU/μg protein)。與市售產品ExGen 500(1.17×105 RLU/μg protein)和Lipofectamine 2000(3.12×104 RLU/μg protein)比較發現,明膠─聚乙二烯胺奈米微粒的轉染效率達到ExGen 500的20 %,且與Lipofectamine 2000的效率接近。而在細胞活性方面,明膠─聚乙二烯胺奈米微粒的細胞活性可以達到86.4 %,表現優於ExGen 500(67.7%)及Lipofectamine 2000(33.4%)。
根據實驗結果,經聚乙二烯胺修飾的明膠奈米微粒,其轉染效率大幅提昇高,且細胞毒性低於市售商業產品,為一具有高轉染效率與低生物毒性的基因轉染載體。
zh_TW
dc.description.abstractIn gene therapy, developing non-toxic and efficient gene delivery system is vital. Although there has been numerous studies regarding viral gene vectors, safety concern limits the application. For this reason, recent studies have shown that non-viral gene vectors, especially polymer nanoparticles, play an important role in gene therapy. Polymer nanoparticles offer several significant advantages, including biosafety, easier modification, cost-effectiveness and so on; polyethylenimine is particularly attractive for non-viral gene therapy.
The high affinity with DNA of PEI is due to its large amount of positive net charges from nitrogen atoms. High cationic surface charge also gives PEI an excellent buffer capacity in acidic environment. However, high transfection efficiency of PEI (25kDa), along with its cytotoxicity, strongly depends on its molecular weight. To maintain the transfection efficiency and minimize cytotoxicity, many studies performed cross-linked low molecular weight PEI.
In this study, gelatin, a biopolymer without cytotoxicity, was made to nanoparticle. Then PEI was cross-linked into the surface of nanoparticles. Because of high positive zeta potential (42.47 mV) and buffering effect, GA-PEI 1.8k can form compact and stable complex with DNA. The results showed that GA-PEI 1.8k NPs with N/P ratio 30 had excellent transfection efficiency (2.12×104 RLU/μg Protein), which is about 20% of ExGen 500(1.17×105 RLU/μg Protein)and comparable to Lipofectamine 2000 (3.12×104 RLU/μg Protein). The cell viability of GA-PEI 1.8k (86.4%) is higher than ExGen 500 (67.7%) and Lipofectamine 2000 (33.4%).
We successfully cross-linked PEI into the surface of gelatin nanoparticle. As a gene vector, GA-PEI 1.8k NPs had high trnasfection efficiency and low cell toxicity, and it can be a potential gene delivery system used in gene therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:16:10Z (GMT). No. of bitstreams: 1
ntu-96-R94548005-1.pdf: 1652605 bytes, checksum: 4e09a5a4dad987f29153ef65a733570d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
致謝………………………………………………………………………Ⅰ
中文摘要…………………………………………………………………Ⅱ
英文摘要…………………………………………………………………Ⅳ
目錄………………………………………………………………………Ⅴ
圖目錄……………………………………………………………………Ⅷ
表目錄……………………………………………………………………Ⅹ
第一章 序論………………………………………………………………1
1.1 基因治療…………………………………………………………1
1.2 基因轉染…………………………………………………………2
1.3 細胞的吞噬作用…………………………………………………3
1.4 基因傳送系統……………………………………………………4
1.5 病毒型載體………………………………………………………5
1.5.1反轉錄病毒載體………………………………………………5
1.5.2腺病毒載體……………………………………………………6
1.5.3腺衛星病毒……………………………………………………6
1.6 非病毒型載體……………………………………………………7
1.6.1微脂粒…………………………………………………………9
1.6.2高分子奈米微粒………………………………………………10
1.7 正電荷高分子用於基因治療…………………………………11
第二章 文獻回顧………………………………………………………12
2.1 明膠……………………………………………………………12
2.2 明膠奈米微粒…………………………………………………13
2.3 聚乙二烯胺……………………………………………………16
第三章 研究動機與目的………………………………………………19
第四章 實驗材料與方法………………………………………………20
4.1 實驗材料………………………………………………………20
4.2 實驗儀器………………………………………………………21
4.3 緩衝液配製……………………………………………………22
4.4 奈米顆粒製備與物理性測試…………………………………23
4.4.1明膠奈米微粒的製備…………………………………………23
4.4.2以聚乙二烯胺修飾明膠奈米微粒……………………………23
4.4.3粒徑分析與介面電位…………………………………………24
4.4.4奈米顆粒的緩衝能力…………………………………………24
4.5 奈米顆粒的N/P…………………………………………………25
4.5.1 表面自由氨基測定……………………………………………25
4.5.2奈米微粒與質體複合物………………………………………25
4.6 體外細胞試驗…………………………………………………26
4.6.1細胞培養………………………………………………………26
4.6.2細胞計數………………………………………………………27
4.6.3 MTS細胞活性測試……………………………………………28
4.6.4基因轉染效率試驗……………………………………………30
第五章 研究結果與討論………………………………………………31
5.1 奈米顆粒物理性分析…………………………………………31
5.1.1 PEI修飾量對奈米顆粒的影響………………………………31
5.1.2顆粒大小與表面電位…………………………………………32
5.1.3生理環境對奈米顆粒…………………………………………33
5.1.4表面自由胺基測定與N/P………………………………………36
5.2 細胞影像………………………………………………………38
5.3 轉染試驗與細胞活性…………………………………………43
第六章 結論……………………………………………………………46
第七章 參考文獻………………………………………………………47


圖目錄
圖1-1 基因轉染過程[2]…………………………………………………2
圖1-2 細胞的吞噬作用…………………………………………………3
圖1-3 分子材料以及具有正電荷高分子的微脂粒[6]…………………7
圖1-4 常見非病毒型載體用於基因轉染[6]……………………………8
圖1-5 微脂粒的結構示意圖……………………………………………9
圖1-6 正電荷高分子進行細胞轉染時遇到的阻礙[3]………………11
圖2-1 膠原形成明膠的過程[3]………………………………………12
圖2-2 明膠溶液分子量分佈情形[12]…………………………………13
圖2-3 正電荷明膠奈米微粒在不同pH值下的介面電位[13]………14
圖2-4 在明膠奈米顆粒表面接上anti-CD3 antibody[12]……………15
圖2-5 利用aziridine為單體合成分支型PEI[2]……………………16
圖2-6 聚乙二烯胺DNA複合經吞噬作用進入細胞的機制[3]……17
圖2-7 低分子量PEI藉由glutadialdehyde交聯聚合[19]…………19
圖4-1明膠與具有氨基的小分子,藉由EDC交聯反應[3]………24
圖4-2 MTS tetrazolium的結構和formazan產物…………………28
圖4-3 MTS的formazan產物在不同波長的吸收值………………29
圖4-4 MTS分析中490 nm吸收値與細胞總數的關係…………29
圖5-1 不同PEI 1.8k添加量對奈米顆粒物理性分析……………31
圖5-2 不同奈米顆粒在不同pH值環境下,其介面電位的改變…34
圖5-3 不同奈米顆粒在不同pH值環境下,其顆粒大小的改變…34
圖5-4 奈米顆粒對酸性的緩衝效果…………………………………35
圖5-5 以Glycine為標準品的吸收值與胺基濃度關係……………36
圖5-6 GA-PEI 1.8k在不同N/P比值下的介面電位………………37
圖5-7 40倍視野下觀察ExGen 500綠色螢光蛋白轉染…………39
圖5-8 100倍視野下觀察ExGen 500綠色螢光蛋白轉染………40
圖5-9 GA-PEI 600奈米顆粒在N/P為30,轉染48小時…41
圖5-10 40倍視野觀察GA-PEI 1.8k做綠色螢光蛋白轉染……42
圖5-11 BCA標準曲線…………………………………………44
圖5-12 修飾前後奈米顆粒,在不同N/P下的轉染效率……44
圖5-13 GA-PEI 1.8k在不同N/P的細胞實驗……………45
圖5-14 GA-PEI 1.8k與市售產品的比較…………………45



表目錄
表2-1 去溶劑法的實驗常數[14]………………………………………14
表4-1 市售細胞轉染載體的使用比例…………………………………30
表5-1 奈米顆粒在酸性環境下的顆粒大小以及介面電位……………32
表5-2 不同奈米顆粒的表面胺基濃度…………………………………36
dc.language.isozh-TW
dc.subject非病毒型載體zh_TW
dc.subject基因治療zh_TW
dc.subject基因傳送系統zh_TW
dc.subject高分子奈米微粒zh_TW
dc.subject聚乙二烯胺zh_TW
dc.subject明膠zh_TW
dc.subjectPolyethylenimineen
dc.subjectGelatinen
dc.subjectGene therapyen
dc.subjectGene delivery systemen
dc.subjectNon-viral vectorsen
dc.subjectPolymer nanoparticlesen
dc.title利用聚乙二烯胺修飾作為基因載體的明膠奈米微粒zh_TW
dc.titleSurface modification of gelatin nanoparticles with polyethylenimine as a gene vectoren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾次文,劉得任,江鴻生
dc.subject.keyword基因治療,基因傳送系統,非病毒型載體,高分子奈米微粒,聚乙二烯胺,明膠,zh_TW
dc.subject.keywordGene therapy,,Gene delivery system,Non-viral vectors,Polymer nanoparticles,Polyethylenimine,Gelatin,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
1.61 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved