Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇明道(Ming-Daw Su)
dc.contributor.authorHsin-I Hsiehen
dc.contributor.author謝心怡zh_TW
dc.date.accessioned2021-06-13T00:14:39Z-
dc.date.available2007-07-28
dc.date.copyright2007-07-28
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation1. Ackerman, Edward A., “Geography and Demography,” In Hauser Philip M. and Duncan, Otis Dudley (Eds.), The Study of Population, The University of Chicago Press, pp. 717-727, 1959.
2. Chen, K., McAneney, J., Blong, R., Leigh, R., Hunter, L., and Magill, C., “Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach,” Applied Geography, 24, pp. 97-117, 2004.
3. Chang, Kang-tsung, Introduction to Geographic Information Systems, Mc-Graw-Hill, 2003.
4. Donnay, J. P. and Unwin, D., “Modelling geographical distributions in urban areas,” In J. P. Donnay, M. J. Barnsley, and P. C. Longley (Eds.), Remote sensing and urban analysis, London: Taylor and Francis, pp. 205-224, 2001.
5. Fawcett, James T., Psychology and Population, The Population Council, pp. 8-9, 1980.
6. Geurs, K. T. and Ritsema, J. R., Accessibility measures: review and applications. Evaluation of accessibility impacts of land-use transport scenarios, and related social and economic impacts, Urban Research Centre, Utrecht University, 2001.
7. Gregory, I. N., “Longitudinal analysis of age and gender specific migration patterns in England and Wales: a GIS-based approach,” Social Science History, 24, pp. 471-503, 2000.
8. Gregory, I. N., “The accuracy of areal interpolation techniques: standardising 19th and 20th century census data to allow long-term comparisons,” Computers Environment and Urban Systems, 26, pp. 293-314, 2002.
9. Gregory, I. N., Bennett, C., Gilham, V. L., and Southall, H. R., “The Great Britain Historical GIS: from maps to changing human geography,” Cartographic Journal, 39, pp. 37-49, 2002.
10. Gregory, I. N. and Ell, P. S., “Breaking the boundaries: geographical approaches to integrating 200 years of the census,” Journal of the Royal Statistical Society, 168(2), pp. 419-437, 2005.
11. Holt, J. B., Lo, C. P., and Hodler, T. W., “Dasymetric Estimation of Population Density and Areal Interpolation of Census Data,” Cartography and Geographic Information Science, 31(2), pp. 103-121, 2004.
12. Langford, M., Maguire, D., and Unwin, D. J., “The areal interpolation problem: estimating population using remote sensing in a GIS framework,” In I. Masser and M. Blakemore (Eds.), In Handling Geographical Information: Methodology and Potential Applications, New York: Longman, pp. 55-77, 1991.
13. Langford, M., and Higgs, G., “Measuring Potential Access to Primary Healthcare Services: The Influence of Alternative Spatial Representations of Population,” The Professional Geographer, 58(3), pp. 294-306, 2006.
14. Langford, M., “Obtaining population estimates in non-census reporting zones: An evaluation of the 3-class dasymetric method,” Computers Environment and Urban Systems, 30, PP. 161-180, 2006.
15. Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D.W., Geographical Information Systems and Science, New York: Wiley, 2001.
16. Martin, D., “Mapping population data from zone centroid locations,” Transactions of the Institute of British Geographers, 14, 90-97, 1989.
17. Martin, D. and Gascoigne, R., “Change and change again: geographical implications for intercensal analysis,” Area, 26, 133-141, 1994.
18. Martin, D., Geographic Information Systems: Socio-economic Applications, 2nd edn. London: Routledge, 1996.
19. Martin, D., “Optimising census geography: the separation of collection and output geographies,” International Journal of Geographical Information Science, 12, 673-685, 1998.
20. Martin, D., Dorling, D., and Mitchell, R., “Linking censuses through time: problems and solutions,” Area, 34, 82-91, 2002.
21. McLachlan, G. J. and Krishna, T. (Eds.), The EM Algorithm and Extensions, Chichester: Wiley, 1997.
22. Moore, Wilbert E., “Sociology and Demography,” In Hauser Philip M. and Duncan, Otis Dudley (Eds.), The Study of Population, The University of Chicago Press, pp. 832-854, 1959.
23. Openshaw, S., “A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modeling,” Trans. Inst. Br. Geogr. New Ser., 2, 459-472, 1979.
24. Sadahiro, Y., “Accuracy of areal interpolation: a comparison of alternative methods,” Journal of Geographical Systems, 1, 323-346, 1999.
25. Simpson, L., “Geography Conversion Tables: a framework for conversion of data between geographical units,” Int. J. Popln Geogr., 8, 69-82, 2002.
26. Spengler, Joseph J., “Sociology and Demography.” In Hauser Philip M. and Duncan, Otis Dudley (Eds.), The Study of Population, The University of Chicago Press, pp. 791-831, 1959.
27. Trewartha, G. T., “ A Case for Population Geography”, Annals of the Association of Geographers, pp 71-97, 1953.
28. Weeks, John R., Population: an introduction to concepts and issues, Wadsworth Publishing, 1989.
29. Wright, J. K., “A method of mapping densities of population with Cape Cod as an example,” Geographical Review, 26, pp. 103-110, 1936.
30. Yuan, Y., Smith, R. M., and Limp, W. F., “Remodelling census population with spatial information from Landsat TM imagery,” Computers Environment and Urban Systems, 21, 245-258, 1997.
31. Youngs, F. A., Guide to the Local Administrative Units of England, vol. 2, Northern England, London: Royal Historical Society, 1991.
32. Zelinsky, W., A Prologue of Population Geography, Prentice Hall Inc, M. J., 1966.
33. 中國大百科全書出版社,中國大百科全書智慧藏,遠流集團智慧藏公司,2004。
34. 內政部土地測量局,http://www.lsb.gov.tw/lsb/web/05_business/18.php,2007。
35. 石計生,地理資訊系統社會學,儒林圖書公司,2001。
36. 交通部道路交通安全督導委員會,http://168.motc.gov.tw/GIPSite/wSite/ct?xItem=1809&ctNode=1123&mp=6,2007。
37. 朱建銘,土地利用空間型態之研究,國立台灣大學地理資源研究所,2001。
38. 沈昌懋,空間自相關在人口分布資料之應用研究,國立臺灣大學農藝學研究所,2005。
39. 胡傳中,都市地區時序性日間人口推估,國立臺灣大學建築與城鄉研究所,2004。
40. 梁蘄善,地理學計量方法,中國文化大學出版部,2000。
41. 陳錦嫣,GIS技術與實務應用,新文京開發出版股份有限公司,2003。
42. 陳慈仁,臺北市資訊軟體業與網際網路服務業區位之研究,國立臺灣大學建築與城鄉研究所,2001。
43. 張善余,人口地理學概論,華東師範大學出版社,1999。
44. 張德偉,臺灣人口空間分布與變遷之研究—兼評人口分布政策,國立中興大學都市計畫研究所,1991。
45. 許道欣,人口遷移決策及其影響因素—臺灣地區人口內部遷移之研究,國立中興大學都市計畫研究所,1992。
46. 黃紹東,臺南市東區住宅價格之空間自我迴歸分析,國立成功大學都市計劃學系,2004。
47. 臺北市政府民政局,http://www.czone2.tcg.gov.tw/tp92-1/first_frame.cfm,2007。
48. 蔡進宏、廖正宏,人口學,巨流圖書公司,1987。
49. 鄭雯瑛,日間活動人口估算模式之建立-以台北市之銀行業及證券業為例,國立交通大學交通運輸研究所,1999。
50. 謝純瑩,臺灣中部地區人口老化空間變遷之研究,國立彰化師範大學地理學研究所,2001。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28623-
dc.description.abstract人口資料為城市、經濟、商業、交通、社會、政治、歷史、生態等方面研究基礎,其扮演影響結果的重要角色,然而以往的人口分布圖多以行政區域為單位,只呈現在特定區域內的人口密度或是人口數,這樣的人口分布圖往往有分區單元不夠細緻、研究分區不同、行政單元於時間上的重組與邊界變遷等問題,進而造成研究結果的誤差。為了改善人口分布圖的缺失,現今已有許多人口分布的推估方式,然而這些推估方式各有優缺點,以往研究大多使用單一推估方式,近來有研究提出多層式架構概念,將各種推估方式作一整合,達到截長補短之效果。
為了驗證推估結果必須要以實際值做對照,但由於隱私之考量及行政作業上之限制,人口實際位置資料之取得有實務上的困難,因此本研究以臺北市門牌資料作為實際值,將點資料加總後之門牌總數,以本研究所提之多層多類別架構進行門牌數之空間分配,研究中以邊長40m的正方形網格為單位,利用建物、土地使用分區、交通路網等圖層,配合二元、權重、可及性等方式建立一多層多類別的推估模式,每一層均使用一種人口分布推估方式,而層內更利用輔助圖層將每一分區單元劃分成不同類別,給予不同權重加以逐層推估,期望以此一模式推估門牌之空間分布,以建立人口推估之架構,改善以往人口分布圖的不足之處。
由本研究結果可以看出,相較於傳統人口密度分布圖,本研究所建立之多層多類別人口地理推估模式能較準確表現人口於空間上的的變異,推估誤差的標準偏差由初始的10.39降至9.29(第一層)、8.71(第二層)、8.71(第三層),相較於行政分區所做出的人口分布密度誤差標準偏差值(區為9.91,里為8.87)亦有較好的結果,而在逐層推估過程中,完全推估正確的網格數逐層增加,而有誤差的網格之誤差絕對值平均也由第一層的10.42、第二層8.65到第三層8.57逐層改善。
研究中也發現以多層多類別人口地理分布模式逐層推估的過程中,第一層所改善的情況為最佳,之後逐層推估雖均有改善的情況,然而進步的幅度卻相對降低,每一層推估結果均有靠近山區範圍高估而都市中心低估的情況,此為區域居住型態不同所造成之影響,但整體而言仍能大致掌握了人口分布的特性。
zh_TW
dc.description.abstractThe population distribution plays a crucial role in many research fields. However, the map of the population distribution is usually based on administrative divisions, and only shows the population density or the number of population in the region. Traditional maps of population distribution have problems like inadequate area size that is too large, the inapplicability of the administrative division unit in many applications and the change of the administrative boundaries over time.
Many estimation methods of the population distribution have been proposed in literatures to improve the defects of the population distribution maps. However these proposed methods have its advantages and disadvantages. Most researches use a single estimate method. Some recent researches proposed the concept of the multi-layered estimation which integrates various estimation methods in the framework.
A multi-layer and multi-class framework is proposed in this study to improve the accuracy in estimating the population distribution. Grid data structure with 40m of resolution was used. Each layer (building, land-use, and traffic accessibility layers) uses individual estimate methods (binary, multi-class, and accessibility) to estimate populations in each cell for better capture of spatial distribution of regional populations.
The proposed framework can better capture the true population distribution in comparison with the traditional population density maps based on administrative divisions. The standard deviation of estimation errors decreases from 10.39 to 9.29 in the first layer, to 8.71 in the second layer, and 8.71 in the third layer. The results are also better than decomposing the total population based on administration units, the standard deviation of errors is 9.91(town) and 8.87(village) respectively.
The numbers of cell without errors also increases and average errors in the erroneous cells decrease with improvements through layers. The mean error is 10.42 in the first layer, 8.65 in the second layer and 8.57 in the third one. It is also found that the improvement is most significant in the first layer and diminished in the following ones.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:14:39Z (GMT). No. of bitstreams: 1
ntu-96-R94622013-1.pdf: 13228264 bytes, checksum: 2d8e2462f35fdaa0811b03caf7fd8cd0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝 誌 I
摘 要 II
Abstract III
目 錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 研究動機 1
1-1-1 人口總數與人口分布 1
1-1-2 傳統人口推估地圖之缺誤 2
1-2 研究目的 6
第二章 文獻回顧 7
2-1 人口學與人口地理學 7
2-2 人口地圖 9
2-2-1 人口地圖種類 9
2-2-2 面量圖與分區密度圖 10
2-3 人口分布推估方式 12
2-3-1 二元推估方式 (Binary dasymetric) 12
2-3-2 面積權重推估方式 (Area weighting) 13
2-3-3 多類別權重推估方式 (Multi-Class) 14
2-3-4 可及性推估方式 (Accessibility) 15
2-3-5 迴歸推估方式 (Regression) 16
2-3-6 綜合比較 17
2-4 多層架構人口推估方式 18
第三章 研究方法 19
3-1 研究架構 19
3-2 研究區域概述 21
3-2-1 研究區域地理位置與行政分區 21
3-2-2 研究資料類型與分區單元 22
3-3 第一層:建物二元推估 26
3-4 第二層:土地使用多類別推估 28
3-5 第三層:交通可及性推估 31
3-5-1 國道與快速道路 32
3-5-2 省、鄉、縣道與產業道路 33
3-5-3 其他道路 33
3-5-4 捷運 34
3-5-5 統整交通可及性 35
第四章 結果與討論 38
4-1第一層:建物二元推估 38
4-2第二層:土地使用多類別推估 41
4-3第三層:交通可及性推估 44
4-4 推估結果與行政分區推估結果比較 47
第五章 結論與建議 59
參考文獻 61
dc.language.isozh-TW
dc.title多層多類別之人口地理分布模式zh_TW
dc.titleMulti-Class Multi-Tiers Dasymetric Demographic Modelen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡博文(Bor-Wen Tsai),張春蘭(Chun-Lan Chang)
dc.subject.keyword分區密度圖,人口分布,多層,多類別,可及性,二元,zh_TW
dc.subject.keyworddasymetric map,population distribution,multi-layer,multi-class,accessibility,binary,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2007-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
12.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved