Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃乾綱
dc.contributor.authorWei-Hsiang Linen
dc.contributor.author林暐翔zh_TW
dc.date.accessioned2021-06-13T00:12:31Z-
dc.date.available2009-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation1. Someya, T. and T. Sakurai. Integration of Organic Field-Effect Transistors and Rubbery Pressure Sensors for Artificial Skin Applications. Technical Digest - International Electron Devices Meeting, 2003, p 203-206
2. Dimitrakopoulos, C.D., et al., Field-effect transistors comprising molecular beam deposited α,ω-di-hexyl-hexathienylene and polymeric insulator. Synthetic Metals, 1998. 92(1): p. 47-52.
3. Lin, Y.Y., et al. High-mobility pentacene-based organic thin film transistors.
Annual Device Research Conference Digest, 1997, p 60-61
4. Kelley, T.W., et al., Recent progress in organic electronics: Materials, devices, and processes. Chemistry of Materials, 2004. 16(23): p. 4413-4422.
5. Minakata, T. and Y. Natsume. Transistors formed with solution-processed thin films of pentacene. 2005. San Diego, CA, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States.
6. Anthony, J.E., et al., functionalized pentacene: Improved electronic properties from control of solid-state order [20]. Journal of the American Chemical Society, 2001. 123(38): p. 9482-9483.
7. Li, Y., et al., Stable solution-processed high-mobility substituted pentacene semiconductors. Chemistry of Materials, 2007. 19(3): p. 418-423.
8. Afzali, A., C.D. Dimitrakopoulos, and T.L. Breen, High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. Journal of the American Chemical Society, 2002. 124(30): p. 8812-8813.
9. Afzali, A., C.R. Kagan, and G.P. Traub, N-sulfinylcarbamate-pentacene adduct: A novel pentacene precursor soluble in alcohols. Synthetic Metals, 2005. 155(3): p. 490-494.
10. Assadi, A., et al., Field effect mobility in thin films of poly(3-alkylthiophene). Synthetic Metals, 1989. 28(1-2): p. 863-869.
11. Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high- mobility conjugated polymers. Nature, 1999. 401(6754): p. 685-688.
12. Sirringhaus, H., et al., High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000. 290(5499): p. 2123-2126.
13. Bao, Z., A.J. Lovinger, and J. Brown, New air-stable n-channel organic thin film transistors. Journal of the American Chemical Society, 1998. 120(1): p. 207.
14. Klauk, H., et al., Flexible organic complementary circuits. IEEE Transactions on Electron Devices, 2005. 52(4): p. 618-622.
15. Lee, T.-W., et al., All-Solution-Processed n-Type Organic Transistors Using a Spinning Metal Process. Advanced Materials, 2005. 17(18): p. 2180-2184.
16. Morana, M., G. Bret, and C. Brabec, double-gate organic field-effect transistor. Applied Physics Letters, 2005. 87(15): p. 153511.
17. Stutzmann, N., R.H. Friend, and H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science, 2003. 299(5614): p. 1881-1884.
18. Muller, K., et al., Organic thin film transistors with polymer high-k dielectric insulator. Materials Science and Engineering C, 2006. 26(5-7): p. 1028-1031.
19. Jang, J. and S.H. Han, High-performance OTFT and its application. Current Applied Physics, 2006. 6(SUPPL 1): p. 17-21.
20. Cantatore, E., et al., A 13.56-MHz RFID system based on organic transponders. IEEE Journal of Solid-State Circuits, 2007. 42(1): p. 84-92.
21. 龔詩欽、楊詔中、鍾政儒、蔡居恕、伍湘玲,噴墨技術於電子產業的應用, 工業材料雜誌209 期93年5月:p.132-137
22. Steven, E. M., Ultra-Low-Cost Printed Electronics, Technical Report No. UCB/EECS-2006-55, May 15, 2006
23. Liu, Y., K. Varahramyan, and T. Cui, Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique. Macromolecular Rapid Communications, 2005. 26(24): p. 1955-1959.
24. Chen, B., et al., All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electronics, 2003. 47(5): p. 841-847.
25. Khillan, R.K., Y. Su, and K. Varahramyan. High resolution polymer LEDs fabricated by drop-on-demand inkjet printing and reactive ion etching. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v 5739, Light-Emitting Diodes: Research, Manufacturing, and Applications IX, 2005, p 59-65
26. Tekin, E., B.-J. De Gans, and U.S. Schubert, Ink-jet printing of polymers - From single dots to thin film libraries. Journal of Materials Chemistry, 2004. 14(17): p. 2627-2632.
27. Park, Y.-H., et al. Triisopropylsilyl pentacene organic thin-film transistors by ink-jet printing method. 2006. Daegu, South Korea: Korean Information Display Society, 635-4 Yeogsam-Dong, Kangnam-gu, Seoul, 135-703, South Korea.
28. Song, D.H., et al., Process optimization of organic thin-film transistor by ink-jet printing of DH4T on plastic. Applied Physics Letters, 2007. 90(5): p. 053504.
29. Lin, K.-T., et al. Organic thin-film transistors with ink-jet printed metal electrodes. Digital Fabrication 2006 - Final Program and Proceedings, 2006, p 151-154
30. Shimoda, T., et al., Solution-processed silicon films and transistors. Nature, 2006. 440(7085): p. 783-786.
31. Huang, D., et al., Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. Journal of the Electrochemical Society, 2003. 150(7): p. 412-417.
32. Molesa, S., et al. High-quality inkjet-printed multilevel interconnects and inductive components on plastic for ultra-low-cost RFID applications. Materials Research Society Symposium - Proceedings, v 769, 2003, p 253-258
33. Wu, Y., et al., High-performance organic thin-film transistors with solution-printed gold contacts. Advanced Materials, 2005. 17(2): p. 184-187.
34. Fuller, S.B., E.J. Wilhelm, and J.M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems. Journal of Microelectromechanical Systems, 2002. 11(1): p. 54-60.
35. Liu, Z., Y. Su, and K. Varahramyan, Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 2005. 478(1-2): p. 275-279.
36. Xue, F., et al., Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors. Microelectronic Engineering, 2006. 83(2): p. 298-302.
37. Mei, J., M.R. Lovell, and M.H. Mickle, Formulation and processing of novel conductive solution
nks in continuous inkjet printing of 3-D electric circuits. IEEE Transactions on Electronics Packaging Manufacturing, 2005. 28(3): p. 265-273.
38. Lee, K.J., et al., Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology, 2006. 17(9): p. 2424-2428.
39. Perelaer, J., B.-J. De Gans, and U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials, 2006. 18(16): p. 2101-2104.
40. Garnett E., and D. Ginley, ELECTRICAL AND MORPHOLOGICAL PROPERTIES OF INKJET PRINTED PEDOT/PSS FILMS, U.S. Department of Energy Journal of Undergraduate Research
41. Ouyang, J., et al., On the mechanism of conductivity enhancement in poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450.
42. Huang, J., et al., Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4- ethylenedioxythiophene)/poly(styrene sulfonate) films. Advanced Functional Materials, 2005. 15(2)
43. Steudel, S., et al., Influence of the dielectric roughness on the performance of pentacene transistors. Applied Physics Letters, 2004. 85(19): p. 4400-4402.
44. Jang, Y., et al., Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor. Applied Physics Letters, 2005. 87(15): p. 152105.
45. Afzali, A., C.D. Dimitrakopoulos, and T.L. Breen, High-performance, solution-processed organic thin film transistors from a novel pentacene precusor. Journal of the American Chemical Society, 2002. 124(30): p. 8812-8813.
46. Gundlach, D.J., et al., Pentacene organic thin-film transistors - molecular ordering and mobility. IEEE Electron Device Letters, 1997. 18(3): p. 87-89.
47. Volkman, S.K., et al. Inkjetted Organic Transistors using a Novel Pentacene precursor. Materials Research Society Symposium - Proceedings, v 771, 2003, p 391-396
48. Yang, H., et al., Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Advanced Functional Materials, 2005. 15(4): p. 671-676.
49. Wang, G., et al., Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating. Synthetic Metals, 2004. 146(2): p. 127-132.
50. Bao, Z., A. Dodabalapur, and A.J. Lovinger, Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Applied Physics Letters, 1996. 69(26): p. 4108.
51. Joung, M.J., et al., The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors. Synthetic Metals, 2005. 149(1): p. 73-77.
52. Chang, J.-F., et al., Enhanced Mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chemistry of Materials, 2004. 16(23): p. 4772-4776.
53. Uemura, S., et al., Influence of the atmosphere on the electric behavior of a polymeric field effect transistor. Molecular Crystals and Liquid Crystals, 2004. 424: p. 209-215.
54. Hoshino, S., et al., Influence of moisture on device characteristics of polythiophene-based field-effect transistors. Journal of Applied Physics, 2004. 95(9): p. 5088-5093.
55. Sandberg, H.G.O., et al., High-performance all-polymer transistor utilizing a hygroscopic insulator. Advanced Materials, 2004. 16(13): p. 1112-1115.
56. Cho, S., et al., Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. Journal of Applied Physics, 2006. 100(11): p. 114503.
57. Jia, H., et al., Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006. 24(4): p. 1228-1232.
58. Veres, J., et al., Gate insulators in organic field-effect transistors. Chemistry of Materials, 2004. 16(23): p. 4543-4555.
59. Klauk, H., et al., High mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 2002. 92(9): p. 5259.
60. Kim, Y.-H., et al. The improvement of electrical characteristic of solution processed triisopropylsilyl pentacene organic thin-film transistors employing hexamethyldisilazane treatment. ECS Transactions, v 3, n 8, Thin Film Transistor Technology, 2006, p 279-285
61. Heil, H., et al., The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene. Journal of Applied Physics, 2003. 93(3): p. 1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28569-
dc.description.abstract隨著有機電子材料的發展,已經有許多的應用於軟性電子的開發上,像是OLED、LCD、e-paper、RFID tag、感測器和太陽能電池等,然而在材料的開發之外,有鑑於軟性基版的低溫製程需求,溶液製程的方式被廣為利用,尤其是噴墨製程的方式,其高自由度、高精度、低成本、溶液製程的優勢,被視為發展軟性電子最有潛力的製程之ㄧ。
本論文利用Microfab的噴頭開發有機電晶體的製程,並自行架設氣壓控制系統、壓電驅動系統、噴墨觀測系統、定位對準系統和可套用的各式軟體,以達到高良率和高重現性的穩定製程,並且能夠讓元件的製作更微小化、精準化,可控制的短通道長度、絕緣層厚度和半導體厚度,因而成功的製作出效能良好的OTFT和金屬銀導線。
而在OTFT的製程上,使用PI 膠帶當做基版、PEDOT/PSS摻雜EG當作導電層、PVP搭配PMF當作絕緣層、P3HT或pentacene 前驅物當作半導體層,完成全噴墨全有機的OTFT製作,並利用表面封裝層、半導體厚度改善和絕緣層表面改質的方式使得元件的電性提升,再進一步探討了通道長短和絕緣層厚度對於OTFT的影響,以達到最佳的電性應用於軟性電路的製作上。
zh_TW
dc.description.abstractWith the advancement of the organic electronic material, many flexible electronics applications appear. Within all these applications, OLED, LCD, e-paper, RFID-tag, sensor , solar cell, etc. are some of the most well-known examples. In addition to develop new materials, associated solution process were also investi閘極d seriously with an attempt to improve manufacturing efficiency as well. To satisfly the low temperature processing requirements for plastic substrate, the ink-jet printing has become one of best candidate for developing the next-generation fabrication process for flexible electronics due to its high degree of freedom, high accurate, low cost, etc.
In this thesis, the printhead made by MicroFab Technologies, Inc. was integrated with the newly developed pneumatics controller system, piezoelectric driver system, ink-jet observing system, substrate positioning system and software to achieve stable fabricating process with highly yield and highly repeatable. Moreover, this newly developed system can minimize the device and perform accurate fabrication requirements such as controllable channel length, film thickness, etc. OTFT and silver conducting lines were successfully fabricated in this thesis.
The fabrication process used PI tape as the substrate, PEDOT/PSS doping EG as the conducting material, PVP blend PMF as the dielectric layer, P3HT or pentacne precursor as the active layer, to arrive at an all ink-jet, all organic OTFT, To further improve the electric performance techniques such as new package, reducing thickness of active layer, surface treatment, and investigate the influence of channel length and dielectric layer thickness, etc. were all integrated in order to obtain the best OTFT circuitry performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:12:31Z (GMT). No. of bitstreams: 1
ntu-96-R94525025-1.pdf: 11119153 bytes, checksum: b26ecd183abe3b461525bd3248d53a3e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 ii
圖目錄 v
表目錄 xii
第1章 緒論 1
1-1 前言 1
1-2 研究背景 3
1-3 研究動機 13
第2章 噴墨原理及簡介 15
2-1 噴墨原理 15
2-2 噴墨製程參數 16
2-3 噴墨製程設備 21
2-4 噴墨製程在軟性電子的現況 25
2-5 噴墨金屬導線 33
第3章 噴墨製程系統架構 42
3-1 正負氣壓系統 43
3-2 壓電驅動系統 45
3-3 墨滴觀測系統 46
3-4 噴印圖形產生及製作系統 50
3-5 定位對準系統 55
3-6 量測儀器與製程設備 59
第4章 元件之製程與材料 64
4-1 銀導線之材料與製程 64
4-2 有機薄膜電晶體之材料與製程 70
第5章 噴墨式OTFT之性能改良 99
5-1 表面封裝對性能之影響與改良 102
5-2 半導體膜厚對性能之影響與改良 109
5-3 通道長短對性能之影響與改良 115
5-4 絕緣層厚度對性能之影響與改良 123
5-5 表面改質對性能之影響與改良 132
第6章 結論與未來展望 135
6-1 結論 135
6-2 未來展望 137
Reference 140
dc.language.isozh-TW
dc.subject有機電晶體zh_TW
dc.subjectOTFTen
dc.title軟性全噴墨有機薄膜電晶體之製作與性能提升zh_TW
dc.titleFabrication and Performance Improvement on All Ink-Jet Printed Flexible Organic Thin Film Transistoren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中
dc.contributor.oralexamcommittee李世光,陳文章,林致廷
dc.subject.keyword有機電晶體,zh_TW
dc.subject.keywordOTFT,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2007-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
10.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved