Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorChia-Hong Suen
dc.contributor.author蘇嘉弘zh_TW
dc.date.accessioned2021-06-13T00:11:45Z-
dc.date.available2008-08-01
dc.date.copyright2007-08-01
dc.date.issued2007
dc.date.submitted2007-07-29
dc.identifier.citation[1] S. Chin, Chief Editor, “磁性技術手冊: Handbook of Magnetic Technologies”written in Chinese), Chinese Association for Magnetic Technologies, July (2002).
[2] 張煦,李學養,“磁性物理學”,聯經出版社,台北,台灣,17-21頁,(2004)。
[3] D. Jiles,“Introduction to Magnetism and Magnetic Materials”Chapman & Hall, 1st edition, New York, 69-82, 89-93, 186-197 (1991) .
[4] 溫明鏡,“氧化鐵磁性奈米粒子之合成與特性研究”,國立中正大學物理研究所碩士論文,嘉義,台灣,(2003)。
[5]“磁性材料特性與量測方法簡介”,佳準科技股份有限公司,台北,台灣,http://www.propii.com.tw/index.html。
[6] 曾莞容,“鐵氧化物與鐵氧化物@金之磁性奈米粒子製備與性質”,私立東海大學化學工程學研究所碩士論文,台中,台灣,(2006)。
[7] Cornell, R.M., Schwertmann, U.,“The Iron Oxides-Structure,Properties,Reaction, Occurrences and Uses”, 2nd edition ,Completely Received and Extended Edition,WILEY-VCH.
[8] 陳威倩,“以γ→α相變機制製作α-Fe2O3微粒”,國立成功大學碩士論文,台南,台灣,(2001)。
[9] Gupta, A.K., Gupta, M.,“Synthesis and surface engineering of iron oxide nanoparticles for biomedical application”,Biomaterials, 26, 3995-4021 (2005).
[10] 劉吉平,郝向陽,“奈米科學與技術”,世茂出版社,第一版,台北,台灣, 18-25頁與28-50頁,(2003)。
[11] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu and D.B. Shieh,“Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications” Biomaterials 26, issue7, 729-738 (2005).
[12] 劉浩澧,“相位陣列式超音波熱治療系統之加熱策略設計與熱
劑量控制”,國立台灣大學電機工程學研究所博士論文,台北,台灣,(2003)。
[13] 尹邦躍,“奈米時代”,五南圖書出版公司,1st edition ,台北,台灣,1-20頁與63-70頁,(2002)。
[14] Takagi T., Takahashi K., Aizawa M., Miyata S., Proceedings of the First International Conference on Intelligent Materials, Technomic Publishing Co., Inc.:Lanaster, PA (1993).
[15] A.S. Hoffman, L.C. Chen,“Synthesis and application of thermally reversible heterogels for drug delivery, ”J. Controlled Release, 13, 21-31 (1990).
[16] Feil I.H., Bae Y.H., Feijen J., Kim S.W.,“Molecular separation by thermosensitive hydrogel membrane,”J. Membr. B. Sci., 64(3), 283-294 (1991).
[17] Tanaka T., Nishio I., Sun S. T., Ueno-Nishio S.,“Collapse of gels in electric-field, ”Science, 218, 467-469 (1982).
[18] Evans D.F., Pye G.,Bramley R.,Ckark A.G., Dyson T.J.,Hardcastle J.D.,“Measurement of gastrointestinal pH profiles in normal ambulant human subjects, ”Gut, 29, 1035-1041 (1988).
[19] Ishihara K., Kobayashi M., Shinohara L.,“Control of insulin permeation through a polymer membranes with responsive function for glucose”Makromol. Chem. Rapid Commun, 4, 327-331 (1983).
[20] Ishihara K., Kobayashi M., Ishimaru N.,Shinohara L.,“Glucose Induced Permeation Control of insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase andPoly(amine)”Polym. J., 8, 625-631 (1984).
[21] Albin G., Horbett T.A., Muller S.R., Ricker N.L.,“Theoretical and mental Studies of Glucose Sensitive Membranes”J. Contr. Rel. 6, 267-291,(1987)
[22] Albin G., Horbett T.A., Ranter B.D.“Glucose sensitive membrances for controlled Delivery of insulin”Pulsed and SelfRegulated Drug Delivery, J. Kost. Ed., CRC Press, Boca, Roton, FL, 159-185 (1990).
[23] Tanaka T., Fillmore D., Sun S.T., Nisho I., Swislow G., Shah A.,“Phase transition in ionic gel”Phys. Rev. Lett., 45 , 1636-1639 (1980).
[24] 湯發奮,“溫度/酸鹼應答型外層交聯式奈米膠粒之製備與結構探討”,國立中興大學化學工程學研究所碩士論文,台中,台北,(2006)
[25] S.Y. Lin, K.S. Chen, and R.C.Liang, 'Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly (N-isopropylacrylamide) in water', Polymer, 40, 2619-2624 (1999).
[26] Wichterle O. and D. Lim, “Hydrophilic gels for biological use”, Nature, 185, 117 (1960).
[27] Van der Hoff, B.M.E. “Kinetics of emulsion polymerization” Adv. In Chemistry Series, No.34, 6-31 (1967).
[28] Goodall A.R. ,Wilkinson M.C., Hearn J. “Mechanism of emulsion polymerization of styrene in soap-free system,”J Polym Sci, Part A, ,15 : 2193-2311 (1977)
[29] Cox R.A., Wilkinson M.C., Creasey J.M., Goodall A.R., Hearn J.,“Study of anomalous particles formed during the surfactant-free emulsion polymerization of styrene” J. Polym. Sci. Ed. vol.15, 2311-2319 (1977).
[30] C.Y. Chen, Priima I.,“Emulsion polymerization of acenaphthylene. I. A study of particle nucleation in water phase and in aqueous emulsions”J. Polym. Sci. Chem. Ed. vol.18, 1979 (1980).
[31] Van der Hoff,“Mechanism of Emulsion polymerization” J. Polym. Sci. Symp. vol.72, 161 (1985).
[32] Priest W.J.,“Particle Growth In The Aqueous Polymerization Of Vinyl Acetate”J. Phys. Chem., 56, 1077-1082 (1952).
[33] Hansen F.K., J. Ugelstad, “Kinetics and mechanism of emulsion polymerization”Rubber Chem. and Techn., vol.49, 536 (1976).
[34] Hansen F.K., J. Ugelstad, “Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof”, J. Polym. Sci., Polym. Chem. Ed. Vol.6, 1953 (1978).
[35] Hansen F.K., J. Ugelstad,“Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A. Two step swelling process of polymer particles giving an enormous increase in absorption capacity” J. Polym. Sci., Polym. Chem. Ed. Vol.17, 3033 (1979).
[36] 周玉蕙,“溫度感應型磁性乳膠顆粒之製備與研究”國立台灣大學化學工程研究所碩士論文,台北,台灣,(2004)。
[37] 林家正,“磁性溫感性乳膠顆粒之製造與研究”國立台灣大學化學工程研究所碩士論文,台北,台灣,(2006)。
[38] Papell S.S.,“Manufacture of Magnetofluid”U.S. Patent No.3, 215, 572 (1965).
[39] G.W. Reimers, S.E. Khalafalla,“Production of Magnetic Fluids By Peptization Techniques”,Bumines TPR 59,13 (1972).
[40] Lingyan Wang, Jin Luo, Mathew M. Maye, Quan Fan, Qiang Rendeng, Mark H. Engelhard, Chongmin Wang, Yuehe Lin, Chuan-Jian Zhong, “Iron oxide-gold core-shell nanoparticles and thin film assembly”J. Mater. Chem., 15, 1821-1832 (2005) .
[41] David I., Welch, A.J.E,“Oxidation of magnetite and related apinels. Constitution of γ-ferric oxide”,Trans. Fareday Soc., 52, 1642-1650 (1956).
[42] Lionel Vayssieres, Corinne Chaneac, Elisabeth Tronc, Jean Pierre Jolivet.,“Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation:An Example
of Thermodynamic Stability of Nanometric Oxide Particles ”J. Colloid Interface Sci. 205, 205-212 (1998).
[43] D.H Chen, M.H. Liao,“Preparation and characterization of YADH-bound magnetic nanoparticles”J. Molecular Catalysis B:Enzymatic 16, 283-291 (2002).
[44] Z. G, Peng, K. Hidajat, M.S. Uddin,“Adsorption of bovine serum albumin on nanosized magnetic particles”J. Colloid Interface Sci. 271, 277-283 (2004).
[45] X. Liu, Z. Ma, J. Xing, H. Liu,“Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres”J. Magn. Magn. Mater.270, 1-6 (2004)
[46] S.Y. Mak, D.H. Chen,“Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles”Dye and Pigments 61, 93-98 (2004).
[47] C.L. Lin, W.Y. Chiu, T.M. Don“Superpara- magnetic Thermoresponsive Compasite Latex via W/O Mini- emulsion Polymerization”J. Appl. Polym. Sci.100, 3987-3996 (2006).
[48] C.L. Lin, C.F. Lee, W.Y. Chiu,“Preparation and Properties of poly(acrylic acid) oligomer stabilized superpara- magnetic ferrofluid” J. Colloid Interface Sci.
291, 411-420 (2005).
[49] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B Shieh,“Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications”Biomaterials 26, 729-738 (2005).
[50] T. J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet,P. Legare, P. Bermhardt, C. Leuvrey, and G. Rogez,“Hydrothermal Synthesis of Monodisperse Mag- netite Nanoparticles”Chem. Mater. 18, 4399-4404 (2006).
[51] Wenguang Yu, Tonglai Zhang, Jianguo Zhang, Xiaojing Qiao, Li Yang, Yanhong Liu.“The synthesis of octahedral nanoparticles of magnetite”Mater. Lett. 60, 2998-3001 (2006).
[52] 楊恩伉,“聚(氮-異丙基丙烯醯胺)衍生溫度感應性共聚微乳膠之低臨界溶液溫度之研究”,國立台灣大學材料科學與工程學研究所碩士論文,台北,台灣,(2006)。
[53] Z.S. Petrovic, , W.J. Mcknight, , R. Koningsveld, K. Dusek, Macromolecules, 20, 1088 (1987).
[54] P.J. Flory, B. Erman,“Theory of Elasticity of Polymer Networks.”Macromolecules,15,800 (1982).
[55] B. Erman, L. Monnerie,“Theory of elasticity of amorphous networks: Effect of
constraints along chains.”, Macromolecules, 22, 3342 (1989).
[56] P.J. Flory,“Principles of polymer chemistry”Cornell University Press:New
York (1953).
[57] Fitch R.M.,“The homogeneous nucleation of polymer colloid”Br. Polym. J.5,467-483 (1973).
[58] Fitch R.M., L.B. Shin, Prog. Colloid polym. Sci.,56,1(1975).
[59] Fitch R.M., Tsai C.H., In“Polymer colloids”, edited by R.M. Fitch, Plenum, New York, 73 (1971).
[60] Hansen, F.K., Ugelstad J,“Particle nucleation in emulsion polymerization. IV.
nucleation in monomer droplets.” J. Polym. Sci., Polym. Chem. Ed., 17, 3069
(1979).
[61] Candan Erbil, Seval Aras, Nurseli Uyanik,“Investigation of the effect of type
and concentration of ionizable comonomer on the collapse behavior of
N-Isopropylacrylamide copolymer gels in water” J. Polym. Sci.:Part A:
Polym. Chem.,Vol. 37, 1847- 1855 (1999).
[62] J.M. Yang, H.T. Lin“Properties of chitosan containing PP-g-AA-g-NIPAAM
bigraft nonwoven fabric for wound dressing”J. Memb. Sci. 243, 1-7 (2004).
[63] Mi Kyong Yoo, Won Kyung Seok, Yong Kiel Sung, “Characterization of
Stimuli-sensitive Polymers for Biomedical Applications” Macromol. Symp., 207,
173-186 (2004).
[64] C.L. Lin, W.Y. Chiu,“Polypyrrole/Poly(N-Isopropylacrylamide-co-acrylic
acid) thermosensitive and electrically conductive composite microgels” J.
Polym. Sci.:Part A: Polym. Chem.,Vol. 44, 1648-1659 (2006).
[65] C.L. Lin, W.Y. Chiu, C.F. Lee,“Preparation, morphology, and thermorespon-
sive properties of poly(N-Isopropylacrylamide)-based copolymer microgels”
J. Polym. Sci.:Part A: Polym. Chem.,Vol. 44, 356-370 (2006).
[66] W.F. Lee, Y.C. Chen,“Effect of intercalated hydrotalcite on swelling and
mechanical behavior for poly(acrylic acid-co-N-Isopropylacrylamide) /
hydrotalcite nanocomposite hydrogels ”J. Appl. Polym. Sci.,Vol. 98,
1572-1580 (2005).
[67] B.H. Lee, Brent Vernon,“Copolymers of N-Isopropylacrylamide,
HEMA-lactate and acrylic acid with time-dependent lower critical solution
temperature as a bioresorbable carrier”Polym. Int. 54:418-422 (2005).
[68] W.F. Lee, C.H. Shieh,“pH-thermoreversible Hydrogels. I. synthesis and
swelling behaviors of the (N-Isopropylacrylamide-co-acrylamide-co-
2-hydroxyethyl methacrylate) copolymeric hydrogels” J. Appl. Polym.
Sci.,Vol. 71, 221-231 (1999).
[69] W.F. Lee, Y.L. Huang,“Thermoreversible hydrogels XIV. synthesis and
swelling behavior of the (N-Isopropylacrylamide -co-2-hydroxyethyl
methacrylate) copolymeric hydrogels” J. Appl. Polym. Sci.,Vol. 77, 1769-1781
(2000).
[70] H. Wei, X.Z. Zhang, Y. Zhou, S.X. Cheng, R.X. Zhuo,“Self-assembled
thermoresponsive micells of poly(N-Iso -propylacrylamide-b-methyl
methacrylate)”Biomaterials 27, 2028-2034 (2006).
[71] B.H. Lee, Bianca West, Ryan McLemore, Christine Pauken, and Brent L. Vernon,
“In-Situ Injectable Physically and Chemically Gelling NIPAAM-Based
Copolymer System for Embolization”Biomacromolecules ,7, 2059-2064
(2006).
[72] Zhiqiang Cao, Wenguang Liu, Guixiang Ye, Xiaoli Zhao,Xiaoze Lin, Peng Gao,
Kangde Yao,“N-Isopropylacrylamide /2-Hydroxyethyl Methacrylate Star
diblock copolymers:synthesis and thermoresponsive behavior”Maromol.
Chem. Phys., 207, 2329 -2335 (2006).
[73] C.L. Lin, W.Y. Chiu, C.F. Lee,“Preparation of thermoresponsive core-shell copolymer latex with potential use in drug targeting”J. Coll. & Inter. Sci. 290, 397-405 (2005).
[74] C.Li. Lo, K.M. Lin, G.H. Hsiue“Preparation and characterization of intelligent
core-shell nanoparticles based on poly(D,L-lactide)-g-poly(N-Isopropyl
-acrylamide-co-methacrylic acid)”J. Control. Release 104, 477-488 (2005).
[75] Wu Minghong, Borong Bao, Jie Chen, Yinjuan Xu, Shiru Zhou, Zue-The Ma,
“Preparation of thermoresponsive hydrogel(PP-g- NIPAAM) with on-off
Switching for controlled release of drigs”Radiation Physics and Chemistry 56,
341-346 (1999).
[76] Zhai Maolin, Liu Ning, Li Jun, Yi Min, Li Jiuqiang, Ha Hongfei,“Radiation
preparation of PVA-NIPAAM in a homogeneous system and its application in
controlled release” Radiation Physics and Chemistry 57, 481-484 (2000).
[77] Brazel C.S., Peppas N.A., “Synthesis and characterization of thermo- and
chemomechanically responsive Poly(N-isopropylacrylamide-co-methacrylic
acid) hydrogels” Macromolecules, 28, 8016-8020 (1995).
[78] Shibayama M., Mizutani S.Y., Nomura S., “Thermal properties of copolymer
gels containing N-Isopropylacrylamide” Macromolecules, 29, 2019-2024
(1996).
[79] Zhang X.M., Hu Z.B., Li Y.“The phase transition and shear modulus of ionic
N-isopropylacrylamide gels in concentrated salt solutions” J. Appl. Polym.
Sci.,Vol. 63, 1851-1856 (1997).
[80] Huglin M.B., Liu Y., Velada J.L.,“Thermoreversible swelling behaviour of
hydrogels based on N-isopropylacrylamide with acidic comonomers” Polymer,
38, 5785-5791 (1997).
[81] Schild H.G.,“Poly(N-isopropylacrylamide): experiment, theory and application
Prog. Polym. Sci., 17, 163 (1992).
[82] Feil H., Bae Y.H., Kim S.W.“Mutual influence of pH and temperature on the
swelling of ionizable and thermosensitive hydrogels” Macromolecules, 25,
5528-5530 (1992).
[83] Irie M.,“Stimuli responsive poly(N-isopropylacrylamide) photo- and
chemical-induced phase transitions”Adv. Polym. Sci., 110, 49 (1993).
[84] Saunders B.R.,Vincent B.“Microgel particles as model colloids: theory,
properties and applications”Adv. Colloid Interface Sci., 80, 1-25 (1999).
[85] Pelton R.,“Temperature-sensitive aqueous microgels” Adv. Colloid Interface
Sci., 85, 1-33 (2000).
[86] McPhee W., Tam K.C., Pelton R.,“Poly(N-isopropylacrylamide) Latices
Prepared with Sodium Dodecyl Sulfate”J. Colloid Interface Sci., 156, 24-30
(1993).
[87] 林佳龍,“聚(氮-異丙基丙烯醯胺)衍生溫度感應性共聚膠微體:製備,性
質及應用)”,國立台灣大學材料科學與工程學研究所博士論文,台北,台
灣,(2005)。
[88] 呂鴻基,“甲基丙烯酸甲酯與丙烯酸丁酯的迷你乳化共聚合反應”,國立
台灣大學材料科學與工程學研究所碩士論文,台北,台灣,(2007)。
[89] Harkins W. D.,“General theory of mechanism of emulsion polymerization.” J.
Amer Chem. Soc.,69:1428-1444 (1947).
[90] Harkins W.D., J. Polym. Sci., 5, 217 (1950).
[91] Smith W.V., Ewart R.W.,“Kinetics of emulsion mechanism.” J. Chem. Phys.,
16, 592 (1948).
[92] Jacobi B., Angew. Chem., 64, 539 (1952).
[93] Lichti G., Gillbert R.G., Napper D.H., J. Polym. Sci., Polym. Chem. Ed., 21, 269
(1983).
[94] J.Ugelstad, F.K.Hansen and S.Lange,“Emulsion polymerization of styrene with
sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in
monomer droplets”; Makromol. Chem., 175, 507 (1974).
[95] J. Ugelstad, M. S. El-Aasser and J. W. Vanderhoff, “Emulsion polymerization:
initiation of polymerization in monomer droplets” J. Polym. Sci., Polym. Lett.
Edition, 11, 503-513 (1973).
[96] F.K.Hansen, J.Ugelstad, “Particle Nucleation in Emulsion Polymerization. III.
Investigation of Nucleation in Systems with Anionic Emulsifier by Seeded and
Unseeded Polymerization”, J. Polymer Sci., Pol. Chem. Ed., 17, 3047 (1979).
[97] Matsumoto T., Ochi A., Kobunshi Kagaku, 22:481-485 (1965).
[98] Goodwin J.W., Ottwill R.H., Pelton R., Vianello G., Yates D.E., “Control of
Particle Size in the Formation of Polymer Lattices”, Br. Polymer J., 10, 173-
180 (1978).
[99] Goodwin J.W., Ottwill R.H., Pelton R.,“Studies on the preparation and
characterization of monodisperse polystyrene lattices V:The preparation of
cationic lattices”, Colloid Polym. Sci., 257, 61-69 (1979).
[100] Grancio M.R., Williams D.J., “The morphology of the monomer-polymer particle in styrene emulsion polymerisations.”, J. Polym. Sci., A-1 (8), 2617-2629 ( 1970).
[101] Wikinson M.C., Sherwood R., Hearn J., Goodall A.R.,“The influence of residual styrene monomer, benzaldehyde, and microbial activity on the surface properties of polystyrene lattices”Brit. Polym. J., 11, 1-6 (1979).
[102] C.S. Chern, Gray W. Poehlein, J. Polym. Sci., Parts, Polym. Chem., 28, 305-309
(1990).
[103] 王尉任,“可分解磁性生醫玻璃於腫瘤熱治療之研究”國立台灣大學醫學
工程學研究所碩士論文,台北,台灣,(2005)。
[104] O. Selawry, M. Goldstein, T. McCormick, “Hyperthermia in tissue cultured
cells of malignant origin”,Cancer Res., 17, 785-791 (1957).
[105] E. Huth,“Die Relle der bakteriellen infection bei spontan- remission mailgner
tumoren und leukosen”, Korpereigne Abwehr und bosartige Geschwultsts,
23-37 (1957).
[106] G. Crile,“Selective destruction of cancers after exposure to heat”, Ann. Surg.,
156, 404-407, 414-416 (1962).
[107] R. Pittigrew, “Cancer therapy by whole body heating”,Symp on Cancer
Therpy Hyperthermia and Radiation, 282-288 (1975).
[108] J. Lakin, “A clinical investigation of total-body hyperthermia as cancer
therapy”, Cancer Res., 39, 2252-2254 (1979).
[109] J. Bull, “Summary of the informal discussion of animal models and clinical
studies”Cancer Res., 39, 2262-2263 (1979).
[110] W. C. Dewey, L. A. Sapareto, L.E. Gerweck,“Cellular responses to
combinations of hyperthermia and radiation.”Radiology, 123, 463-474 (1977).
[111] C. W. Song,“Effect of local hyperthermia on blood flow and micro- environment”, Cancer Res., 44, 4721-4730 (1984).
[112] E. J. Hall,“Hyperthermia”,Radiobiology for the radiologist, 5th ed., 504,
Philadelphia, Lippincott Williams& Wilkins (2000).
[113] Streffer C.,“Hyperthermia and the therapy of malignant tumors”, 61, New
York, New York, Springer-Verlag (1987).
[114] R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrot, and C.B.
Taylor, Annals of Surgery 146, 596 (1957).
[115] 趙良曉,“鐵磁性熱種子之癌病熱治療”,國立陽明大學醫學工程研究所碩
士論文,台北,台灣,(1980)。
[116] 劉讚衛,“自律式鎳合金種子加熱之癌病熱治療腫瘤模型溫度分布”,私立
中原大學應用物理研究所碩士論文,桃園,台灣,(1979)。
[117] M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi,
“Intracellular hyperthermia for cancer using magnetite cationic liposomes:In vitro Study”Jpn. J. Cancer Res. 87, 1179-1183 (1996).
[118] M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi,
“Intracellular hyperthermia for cancer using magnetite cationic liposomes:In
vivo Study”Jpn. J. Cancer Res. 89, 463-469 (1998).
[119] M. Shinkai, M. Yanase, M. Suzuki, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi “Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes”J. Magn. Magn. Mater. 194, 176-184 (1999).
[120] A. Ito, K. Tanaka, H. Honda, S. Abe, H. Yamaguchi and T. Kobayashi,
“Complete Regression of Mouse Mammary Carcinoma with a Size Greater than 15mm by Frequent Repeated Hyperthermia Using Magnetite Nanoparticles”J. Biosci. Bioeng. 96, 364-369 (2003).
[121] R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, S. Margel, U.
Richter,“Maghemite nanoparticles with very high AC-losses for application in
RF-magnetic hyperthermia”J. Magn. Magn. Mater. 270, 345-357 (2004).
[122] R. Hergt, R. Hiergeist, M. Zeisberger, G. Glockl, W. Weitschies, L.P. Ramirez, I.
Hilger, W.A. Kaiser,“Enhancement of AC-losses of magnetic nanoparticles for
heating applications” J. Magn. Magn. Mater. 280, 358-368 (2004).
[123] R. Muller, R. Hergt, M. Zeisberger, W. Gawalek,“Preparation of magnetic nanoparticles with large specific loss power for heating applications” J. Magn. Magn. Mater. 289,13-16 (2005).
[124] I. Hilger, R. Hergt, W.A. Kaiser,“Towards breast cancer treatment by magnetic heating” J. Magn. Magn. Mater. 293, 314-319 (2005).
[125] V. S. Kalammbur, Bumsoo Han, Bruce E Hammer, Thomas W Shield and John C Bischof “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications”Nanotechnology 16, 1221-1233 (2005).
[126] D.H. Kim, S.H Lee, K.N. Kim, K.M. Kim, I.B. Shim, Y.K. Lee,“Temperature
change of various ferrite particles with alternating magnetic field for
hyperthermic application” J. Magn. Magn. Mater. 293, 320-327 (2005).
[127] D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, K.D. Kim, H. Park, I.B.
Shim, and Y.K. Lee,“Biodistribution of Chitosan-Based Magnetite
Suspensions for Targeted Hyperthermia in ICR Mice”IEEE Transactions on
Magnetics, Vol 41, No. 10 ( 2005).
[128] D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, I.B. Shim, M.H. Lee, Y.K.
Lee“Surface-modified magnetite nano- particles for hyperthermia:
Preparetion, characterization, and cytotoxicity studies”Curr. Appl. Phys. 6S1 ,
e242-e246 (2006).
[129] 王威智,“磁性微脂粒製備之研究”,國立成功大學化學工程研究所碩士論文,台南,台灣,(2006)。
[130] M. Babincova, D. Leszczynska, P. Sourivong, P. Cicmanec, P. Babinec,
“Superparamagnetic gel as a novel material for electromagnetically induced
hyperthermia” J. Magn. Magn. Mater. 225, 109-112 (2001).
[131] S Mornet, S Vasseur, F Grasset and E Duguet,“Magnetic nanoparticles design for medical diagnosis and therapy”J. Mater. Chem., 14, 2161-2175 (2004).
[132] W. Weitschies, K. Philipp, R. Kotitz, W. Semmler, “Mobility of magnetic PEG-nanoparticles in blood, liver and spleen of rats”,Proc. 2nd World Meeting APGI/APV, Paris 639-640 (1998)
[133] K. Okawa, M. Sekine, M. Maeda, M. Tada, M. Abe, N. Matsushida, K. Nishio and H. Handa,“Heating ability of magnetite nanobeads with various sizes for magnetic hyperthermia at 120kHz, a noninvasive frequency”J. Appl. Phys. 99, 08H102 (2006).
[134] X. Wang, H. Gu, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field” J. Magn. Magn. Mater. 293, 334-340 (2005).
[135] L.T. Fan, S.K. Singh,“Controlled Release:A Quantitative Treatment” , Chap.1,Springer-Verlag, Berlin (1989).
[136] M. Babincova, P. Cicmanec, V. Altanerova, C. Altaner, P. Babinec, “AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy”Bioeletrochemistry 55, 17-19 (2002).
[137] W.F. Lee, R.J. Chiu,“Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogels”Materials Science and Engineering C20, 161-166 (2002).
[138] W.F. Lee, Y.C. Chen,“Effects of intercalated hydrotalcite on drug release behavior for poly(acrylic acid-co-N-isopropylacrylamide) /intercalated hydrotalcite hydrogels”European Polymer Journal 42, 1634-1642 (2006).
[139] Jie Chen, Liming Yang, Yinfeng Liu, Guowei Ding, Yong Pei, Jian Li, Guofei
Hua, Jian Huang,“Preparation and characterization of Magnetic Targeted Drug
Controlled-Release Hydrogel Microspheres”Macromol. Symp. 225, 71-80
(2005).
[140] M. Timko, M. Koneracka, N. Tomasovicova, P. Kopcansky, V. Zavisova
“Magnetite polymer nanospheres loaded by Indomethacin for anti-inflam-
matory therapy”J. Magn. Magn. Mater. 300, e191-e194 (2006).
[141] K.S. Soppimath, L.H. Liu, W.Y. Seow, S.Q. Liu, R. Powell, P. Chan, Y.Y. Yang, “Multifunctional Core-Shell Nanoparticles Self-Asembled from pH-Induced Thermosensitive Polymers for Targeted Intracellular Anticancer Drug Delivery”Adv. Funct. Mater. 17, 355-362 (2007).
[142] S.Q. Liu, N. Wiradharma, S.J. Gao, Y.W. Tong, Y.Y. Yang, “Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs”Biomaterials 28, 1423-1433 (2007).
[143] 黃忠良,“磁性流體理論應用”,復漢出版社,台南,台灣,(1999)。
[144] Wojciech H., Malgorzata C.,“Preparation and electrochemical characterization of Poly(N-isopropylacrylamide-co-acrylic acid) gels swollen by nonaqueous solvents:alcohols.”J. Phys. Chem. B, 106, 11469-11473 (2002).
[145] http://strbio.biochem.nchu.edu.tw/classes/aux_courses/instrumentation/DLS.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28548-
dc.description.abstract本研究主要分成四大部分,首先以共沉澱法將含有FeCl3.6H2O與
FeCl2.4H2O的前驅鹽溶液加入鹼液來共沉澱製備Fe3O4。比較由不同
鹼液所合成之Fe3O4與商用Fe3O4的粒徑分佈、表面電荷、表面型態、晶型結構與磁性質等特性分析。由實驗結果發現,以不同鹼液所合成的Fe3O4其粒徑皆大約為20nm,但由於表面電荷效應與立體障礙排斥的影響,使得粒徑分佈呈現較大的差異,其中以N(CH3)4OH為鹼液所合成的Fe3O4可得到較佳的分散懸浮效果。磁性質分析方面,透過SQUID分析,以N(CH3)4OH為鹼液所合成的Fe3O4與商用Fe3O4皆可得到約60 emu/g的飽合磁化值。根據文獻報導,飽和磁化值越大,其加熱效果越佳。
第二部分則是以氮-異丙基丙烯醯胺(N-isopropyl acrylamide, NIPAAM)與丙烯酸(Acrylic acid, AAc)、甲基丙烯酸二羥基乙酯(2-Hydroxyethyl Methacrylate, HEMA)為單體,N,N’-methylenebis acryl amide (MBA)為交聯劑,Potassium persulfate (KPS)為起始劑,以無乳化劑乳化聚合法合成溫感性微乳膠顆粒。並利用改變共聚單體之比例來調控其藥物釋放應用之標的溫度,並進行粒徑分佈、表面型態、熱性質、溫度及酸鹼感應性等性質探討。由TEM圖可觀察到粒徑約500~600 nm;而其玻璃轉移溫度則會隨著單體共聚比例而有提升或下降;低臨界溶液溫度 (Low critical solution temperature, LCST) 則隨著HEMA與AAc比例的增加而顯著的提升,並達到40℃的藥物釋放預設溫度。酸鹼感應性分析方面,HEMA系統在pH值為7,而AAc系統則在pH為9時有較佳的膨潤性。而NMR圖譜分析則可能因為交聯劑濃度高的關係導致許多特徵峰並未出現,因而無法推算共聚比例之關係。
第三部份則將上述兩部分研究結合,以化學鍵結的方式製備磁性乳膠顆粒。利用鐵氧化物於施加磁場時所產生的磁滯損耗做為溫度感應之開關,使溫感性乳膠顆粒可發生形態轉變進而釋放藥物。透過TEM以及TGA之熱分析可發現,僅AAc系統的膠體顆粒能形成較佳的包覆性,其主要之作用機制來自於COO-與Fe2+及Fe3+可形成化學鍵結使得Fe3O4可以in-situ的方式形成包覆。
最後一部分則是將磁性乳膠顆粒進行加熱效果及藥物釋放的測試。透過外加磁場,Fe3O4會因磁滯損耗而產生熱能,若能達到42~43 ℃時,則可具備有過高熱治療的功效。同時,具備有溫度感應性的膠體也會因為磁滯損耗所造成的溫度變化而形成相變化,進而釋放藥物。在功率電流150A,頻率80.53kHz,濃度50 mg/mL的條件下進行加熱效果測試,結果發現磁性乳膠顆粒的加熱效果恰巧介於單純的磁性粒子與乳膠顆粒之間且溫度上升達5~6℃,已大略達到熱治療的需求溫度。而藥物釋放方面則選用靛花青 (Indocyanine Green, ICG) 與亞甲藍(Methylene Blue, MB) 做為藥物來進行釋放模擬。結果發現,利用磁滯損耗的熱能的確可使得膠體產生相變化而有效的釋放藥物,並達到80%~90%的高釋放率。本研究結合磁性奈米粒子的熱損耗以及溫感性微乳膠的溫感性質等兩種材料的特性,以開發新一代藥物治療之載體技術,期待能改善現有藥物載體的負作用並提升藥物釋放的效率。
zh_TW
dc.description.abstractThis study is divided into four parts. In the first part, the precursors FeCl3.6H2O and FeCl2.4H2O was dissolved in water and then alkali was added to synthesis magnetite nanoparticles by co-precipitation method. The distribution of particle size, surface potential, morphology, lattice structure and magnetic properties of these particles were compared with commercial magnetite. From the results, the size of magnetite were all about 20nm by using different kind’s of alkali. Due to the electric and steric repulsion effect, the size distribution was varied so much, especially the magnetite which used N(CH3)4OH as the alkali. And from the SQUID analysis, the one which use N(CH3)4OH as the alkali could be obtained 60 emu/g magnetization and as higher as the commercial one. According to previous research, the higher the magnetization, the higher the heat efficiency.
At the second part, we used N-isopropylacrylamide (NIPAAM), acrylic acid (AAc) and 2-hydroxyethyl methacrylate (HEMA) as the monomer, N,N’-methylenebis acrylamide (MBA) as the cross-linking agent and Potassium persulfate (KPS) as the initiator to prepare thermoresponsive copolymer microgels by using surfactant-free emulsion polymerization. To reach the goal of the drug delivery temperature, we changed the copolymer molar ratio and further discussed their size distribution, morphology, thermal properties, thermal and pH responsibility. From the the TEM, the size was measured about 500~600 nm;the glass transition temperature changed with different copolymer ratio;low critical solution temperature (LCST) was increasing obviously with increasing HEMA and AAc monomer ratio and then reach the goal of drug releasing temperature-40℃. For pH effect, pH = 7 for HEMA system and pH = 9 for AAc system could get good swelling ratio. NMR spectrum couldn’t be used to calculate the copolymer ratio because some of the characteristic peaks were not find, that may due to the concentration of cross-linking agent was too high.
By combining the above two parts , we prepared the magnetic microgels by using some chemical bonding of magnetite and thermoresponsive copolymer microgels. The hysteresis loss effect resulted from applying a magnetic field to the magnetite can be used as the thermoresponsive switch, and thus the drug delivery by microgels can be achieved by the change of its morphology. From TEM and TGA results, we can find that only AAc system could encapsulate the magnetite well by in in–situ because the chemical bonding between carboxylate group and Fe2+ and Fe3+ .
Finally, the magnetic microgels was tested on heating and drug delivery. By applying the magnetic field, the magnetite produced heat by hysteresis loss, if the temperature can reach 42~43℃, the magnetic microgels may be used as hyperthermia. At the same time, the thermoreponsive copolymer microgels would change its morphology and release drug by increasing the temperature. Under 150A, 80.53kHz, 50mg/Ml, the temperature increased about 5~6℃ and reach to the goal temperature of hyperthermia for magnetic microgels but not for only thermoresponsive copolymer microgels. Indocyanine Green (ICG) and Methylene Blue (MB) were be choosing as the drug to do the release test. From the results, the heat produced by hysteresis loss could be used as the temperature switch and release drug about 80~90% of total quality of drug. .We hope this study can combine the properties of two materials to develop the new therapy technology and improve the side effect of drug loader and increase the drug releasing efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:11:45Z (GMT). No. of bitstreams: 1
ntu-96-R94549006-1.pdf: 5794505 bytes, checksum: 31b78d2a637de37dc12630e21a4fa6f1 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要………………………………………………………………I
英文摘要……………………………………………………………….III
目錄…………………………………………………………………VII
表目錄………………………………………………………………….XII
圖目錄………………………………………………………………...XIV
第一章 緒論…………………………………………………………….1
1-1前言...……………………………………………………...1
1-2磁性理論...………………………………………………...2
1-2-1磁性單位..…………………………………………...2
1-2-2磁滯曲線..…………………………………………...3
1-2-3磁性物質種類………………………….....................5
1-3磁性材料…………………………………………………..8
1-3-1鐵氧化物……...…………………………………...8
1-3-2磁性奈米材料之應用………………………………9
1-4環境敏感性高分子...……………………….................12
1-5乳化聚合...…………………………………..................15
第二章 文獻回顧與研究目的……………………………….......17
2-1磁性流體與鐵氧化物之製備與性質......................17
2-1-1磁性流體的製備……………………………………17
2-1-2鐵氧化物的製備與性質…………………………...20
2-2溫感性乳膠顆粒之製備與其性質及工作原理…………24
2-2-1微乳膠簡介…………………………………………24
2-2-2乳化聚合之原理與反應機構……………………….27
2-3過高熱治療技術…………………………………………32
2-3-1 熱治療技術之機制…………………………………33
2-3-2 熱治療技術之方法與媒介…………………………37
2-3-3 熱治療技術之熱損效率及原理……………………41
2-4 藥物控制釋放技術………………………………………45
2-5研究動機與目的…………………………………………48
2-6研究架構…………………………………………………50
第三章 實驗……………………………………………………………51
3-1實驗藥品…………………………………………………51
3-2實驗儀器…………………………………………………53
3-3實驗流程…………………………………………………55
3-3-1鐵氧化物奈米顆粒之製備流程……………………55
3-3-2溫感性乳膠顆粒之製備流程………………………55
3-3-3磁性溫感性乳膠顆粒之製備流程…………………56
3-3-4 (磁性)溫感性乳膠包覆藥物之製備流程…………56
3-4製備方法…………………………………………………57
3-4-1鐵氧化物奈米顆粒之製備…………………………57
3-4-2溫感性乳膠顆粒之製備……………………………58
3-4-3磁性溫感性乳膠顆粒之製備………………………59
3-4-4 (磁性)溫感性乳膠包覆藥物之製備…………….…60
3-5性質測定與分析…………………………………………61
3-5-1粒徑與Zeta potential表面電荷分析………………61
3-5-2晶格繞射分析(XRD)………………………………61
3-5-3超導量子干涉儀分析(SQUID)……………………61
3-5-4穿隧式電子顯微鏡(TEM)…………………………62
3-5-5熱裂解溫度-熱重損失分析儀分析(TGA)…………62
3-5-6玻璃轉移溫度-熱微差分析儀分析(DSC)…………62
3-5-7 LCST(UV and DLS)分析………………………….62
3-5-8乳膠顆粒之pH值感應性分析……………………63
3-5-9超導核磁共振儀(NMR)……………………………63
3-5-10熱治療效果測試………………………………….63
3-5-11藥物釋放模擬……………………………...............63
第四章 結果與討論……………………………………………………67
4-1鐵氧化物奈米顆粒的合成………………………………67
4-2溫感性乳膠顆粒的合成…………………………………69
4-3磁性溫感性乳膠顆粒的合成……………………………70
4-4 (磁性)溫感性乳膠顆粒包覆藥物之製備………………...71
4-5粒徑與Zeta potential表面電荷分析結果………………72
4-6晶格繞射分析結果………………………………………75
4-7超導量子干涉儀分析結果………………………………76
4-8穿隧式電子顯微鏡照片…………………………………78
4-9熱裂解溫度-熱重損失分析儀分析結果…………………84
4-10玻璃轉移溫度-熱微差分析儀分析結果………………...87
4-11 LCST(UV and DLS)分析結果………………………….91
4-12酸鹼感應性分析結果……………………………………99
4-13超導核磁共振儀分析結果……………………………102
4-14熱治療效果測試結果…………………………………112
4-15藥物釋放模擬結果……………………………………119
4-15-1 ICG檢量線之建立……………………………..119
4-15-2 MB檢量線之建立………………………………120
4-15-3 藥物包覆釋放測試及膨潤性測試…………..…123
第五章 綜合討論……………………………………………..………135
第六章 結論與建議…………………………………………………139
6-1結論………………………………………………………139
6-2建議……………………………………………………..142
第七章 參考文獻……………………………………………………143
附錄A …………………………………………………………………159
dc.language.isozh-TW
dc.title溫度感應性共聚微乳膠與磁性材料結合應用於熱治療與藥物釋放系統之研究zh_TW
dc.titleCombining of Thermoresponsive Copolymer Microgels and Magnetic Materials for Used in Hyperthermia and Drug Delivery systemsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周澤川(Tse-Chuan Chou),楊明長(Ming-Chang Yang),邱文英(Wen-Yen Chiu)
dc.subject.keyword丙烯酸,共聚溫感性微乳膠,共沉澱法,藥物釋放,甲基丙烯酸二羥基乙酯,過高熱治療,氮-異丙基丙烯醯胺,zh_TW
dc.subject.keywordacrylic acid,copolymer microgels,co-precipitation method,2-hydroxyethyl methacrylate,hyperthermia,N-isopropylacrylamide,thermoresponsive drug delivery,en
dc.relation.page162
dc.rights.note有償授權
dc.date.accepted2007-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
5.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved