Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorJhao-Huei Liouen
dc.contributor.author劉昭慧zh_TW
dc.date.accessioned2021-06-13T00:11:02Z-
dc.date.available2008-03-04
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation1.王勖成、邵敏。1997。有限單元法基本原理和數值方法。第二版, 1-30。北京:清華大學出版社。
2.汪呈因。1974。稻作學與米。初版, 92-93, 527-570。台北:徐氏基金會。
3.高橋陸郎。1920。稻及米之研究。第七版。東京市:裳華房。
4.章天祥。1993。磁共振影像三維重建之研究及應用。碩士論文。台北:國立台灣大學電機工程學研究所。
5.陳貽倫。1997。不同初始含水率稻穀乾燥初期之減乾率。農業機械學刊 6(2): 81-89。
6.陳貽倫。1998。以偏微分模式模擬稻穀間歇乾燥。農業機械學刊 7(4): 53-64。
7.盛中德、湯雁翔、郭鳳瑞、黃明仕。1997。稻穀乾燥均化時間對乾燥速率與品質之影響。農業機械學刊 6(2): 69-79。
8.馮丁樹。1994。稻穀乾燥原理。出自'稻穀倉儲加工作業技術手冊 第一輯 稻穀乾燥',1-10。台北:財團法人農業機械化發展中心。
9.馮丁樹。1996。循環式稻穀乾燥模式之建立及應用。農業機械學刊 5(1): 1-16。
10.黃世欣、鄭宇哲、林達德、張程。2005。以磁振影像技術探討單粒稻穀之均化過程。出自'2005農機與生機論文發表會',251-252。台北:中華農業機械學會。
11.楊宜芳、林達德。2000。應用核磁共振法測定穀物含水率之研究。農業機械學刊 9(2): 1-12。
12.劉民卿、蕭介宗。1995。以近紅外線分光光度計偵測稻米的含水率及蛋白質含量。農業機械學刊 4(3): 1-14。
13.鄭宇哲。2002。應用核磁共振探討水果內部損傷。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
14.山澤新吾、吉崎繁、前川孝昭。1971。農產物之乾燥關係基礎的研究(第一報)。農業機械學會誌 33(2):192-199。
15.Bello, M., M. P. Tolaba, and C. Suarez. 2004. Factors affecting water uptake of rice grain during soaking. Lebensmittel-Wissenschaft und-Technologie 37(8): 811-816.
16.Brown, M. A. and R. C. Semelka. 1995. MRI basic principles and applications. New York: John Wiley and Sons, Inc.
17.Chen, C. 2001. Moisture measurement of grain using humidity sensors. Transactions of the ASAE 44(5): 1241-1245.
18.Cihan, A. and M. C. Ece. 2001. Liquid diffusion model for intermittent drying of rough rice. Journal of Food Engineering 49(4): 327-331.
19.Frías, J. M., L. Foucat, J. J. Bimbenet and C. Bonazzi. 2002. Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chemical Engineering Journal 86(1-2): 173-178.
20.Ghosh, P. K., D. S. Jayas, M. L. H. Gruwel and N. D. G. White. 2005. Non-destructive measurement of moisture pattern using MRI in a wheat kernel during drying. ASAE Paper No. 053122. St. Joseph, MI: ASAE.
21.Haghighi, K. and L.J. Segerlind. 1988. Modeling simultaneous heat and mass transfer in an isotropic sphere- a finite element approach. Transactions of the ASAE 31(2): 629-637.
22.Haghighi, K., J. Irudayaraj, R. L. Stroshine and S. Sokhansanj. 1990. Grain kernel drying simulation using the finite element method. Transactions of the ASAE 33(6): 1957-1965.
23.Hwang, S. S. and T. T. Lin. 2004. Analysis of moisture distribution in rice kernels using magnetic resonance imaging. ASAE Paper No. 046153. St. Joseph, MI: ASAE.
24.Irudayaraj, J., K. Haghighi and R. L. Stroshine. 1992. Finite element analysis of drying with application to cereal grains. Journal of Agricultural Engineering Research 53(2): 209-229.
25.Ishida, N., S. Naito and H. Kano. 2004. Loss of moisture from harvested rice seeds on MRI. Magnetic Resonance Imaging 22(6): 871-875.
26.Jia, C. C., W. Yang, T. J. Siebenmorgen and A. G. Cnossen. 2002a. Development of computer simulation software for single grain kernel drying, tempering, and stress analysis. Transactions of the ASAE 45(5): 1485-1492.
27.Jia, C. C., W. Yang, T. J. Siebenmorgen, R. C. Bautista and A. G. Cnossen. 2002b. A study of rice fissuring by finite-element simulation of internal stresses combined with high-speed microscopy imaging of fissure appearance. Transactions of the ASAE 45(3): 741-749.
28.Kandala, C. V. K., S. O. Nelson, R. G. Leffler, K. C. Lawrence and R. C. Davis. 1993. Instrument for single-kernel nondestructive moisture measurement. Transactions of the ASAE 36(3): 849-854.
29.Kovács, A. J. and M. Neményi. 1999. Moisture gradient vector calculation as a new method for evaluating NMR images of corn (Zea Mays L.) kernels during drying. Magnetic Resonance Imaging 17(7): 1077-1082.
30.Kunze, O. R. and C. W. Hall. 1967. Moisture absorption characteristics of brown rice. Transactions of the ASAE 10(4): 448-450, 453.
31.Laguë, C. and B. M. Jenkins. 1991a. Modeling pre-harvest stress-cracking of rice kernels part I: development of a finite element model. Transactions of the ASAE 34(4): 1797-1811.
32.Laguë, C. and B. M. Jenkins. 1991b. Modeling pre-harvest stress-cracking of rice kernels part II: implementation and use of the model. Transactions of the ASAE 34(4): 1812-1823.
33.Lu, R. and T. J. Siebenmorgen. 1992. Moisture diffusivity of long-grain rice components. Transactions of the ASAE 35(6): 1955-1961.
34.Mohoric, A., F. Vergeldt, E. Gerkema, A. d. Jager, J. V. Duynhoven, G. V. dalen and H. V. As. 2004. Magnetic resonance imaging of single rice kernels during cooking. Journal of Magnetic Resonance 171(1): 157-162.
35.Nelson, S. O. and A. W. Kraszewski. 1990. Grain moisture content determination by microwave measurements. Transactions of the ASAE 33(4): 1303-1307.
36.Nelson, S. O., K. C. Lawrence, C. V. K. Kandala, D. S. Himmelsbach, W. R. Windham and A. W. Kraszewski. 1990. Comparison of DC conductance, RF impedance, microwave, and NMR methods for single-kernel moisture measurement in corn. Transactions of the ASAE 33(3): 893-898.
37.Nelson, S. O., A. W. Kraszewski, C. V. K. Kandala and K. C. Lawrence. 1992. High-frequency and microwave single-kernel moisture sensors. Transactions of the ASAE 35(4): 1309-1314.
38.Sarker, N. N., O. R. Kunze and T. Strouboulis. 1994. Finite element simulation of rough rice drying. Drying Technology 12(4): 761-775.
39.Sarker, N. N., O. R. Kunze and T. Strouboulis. 1996. Transient moisture gradients in rough rice mapped with finite element model and related to fissures after heated air drying. Transactions of the ASAE 39(2): 625-631.
40.Steffe, J. F. and R. P. Singh. 1980. Theoretical and practical aspects of rough rice tempering. Transactions of the ASAE 23(3): 775-782.
41.Takeuchi, S., M. Fukuoka, Y. Gomi, M. Maeda and H. Watanabe. 1997. An application of magnetic resonance imaging to the real time measurement of the change of moisture profile in a rice grain during boiling. Journal of Food Engineering 33(1-2): 181-192.
42.Thakur, A. K. and A. K. Gupta. 2006. Water absorption characteristics of paddy, brown rice and husk during soaking. Journal of Food Engineering 75(2): 252-257.
43.Watanabe, H., M. Fukuoka, A. Tomiya and T. Mihori. 2001. A new non-Fickian diffusion model for water migration in starchy food during cooking. Journal of Food Engineering 49(1): 1-6.
44.Wu, B., W. Yang and C. Jia. 2004. A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process. Biosystems Engineering 87(4): 191-200.
45.Yang, W., C. C. Jia, T. J. Siebenmorgen, T. A. Howell and A. G. Cnossen. 2002. Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. Transactions of the ASAE 45(4): 1037-1044.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28529-
dc.description.abstract本研究探討單粒稻穀內部的水分遷移情形,使用有限元素分析的方法進行模擬,並且利用磁共振影像進行模擬結果的驗證。模擬過程使用了兩種不同的稻穀模型,其中一種是扁橢圓模型,而另一種則是真實稻穀模型。所使用的真實稻穀模型是以高解析度的磁共振影像經COMSOL Multiphysics 3.2軟體內附加的程式指令在MATLAB 6.5上運算後取得。模擬結果顯示稻穀使用熱風乾燥時,熱風的溫度是一個影響乾燥速率的重要因子,使用較高的溫度進行稻穀乾燥時,稻穀表面的水分會快速地被帶走,而使穀粒內水分的分佈呈現不均勻的現象,位於穀粒表面的稻殼與穀皮水分明顯比胚乳處的水分低。稻穀乾燥前的初始溫度對於單粒稻穀乾燥的結果影響不顯著,不同初始溫度的稻穀分別置於熱風中經過18小時的乾燥,初始溫度為25°C與45°C之稻穀內部的長軸穀皮外緣、短軸穀皮外緣與胚乳中心的含水率的差異皆在±0.1% w.b.之內。若使用間歇式乾燥,即乾燥一段時間、均化一段時間的方式,隨著乾燥時間的加長,稻穀的平均乾燥率可明顯的提升,但相對地快速乾燥會造成穀粒內水分梯度的累積,但是若將均化時間拉長,即可減少穀粒內的水分梯度,降低稻穀產生胴裂的情況。因此,若不考慮完成乾燥所須的總時間長短,而僅考慮耗費能源多寡的情況下,使用較短的乾燥時間搭配稍長的均化時間,如乾燥20分鐘—均化120分鐘此一方式來進行間歇式乾燥將可得到較高的乾燥效率,且可減少穀粒因水分梯度過大導致大量胴裂使得整米率下降的情況發生。除了乾燥與均化之外,本研究也探討浸泡時稻穀內水分遷移的情形,分別對帶殼稻穀與去殼稻穀進行浸泡模擬後,分析模擬結果得知在相同溫度下將稻穀浸泡於水中,水分在稻殼的擴散速率比在穀皮慢,稻殼會阻礙穀粒快速地吸附水分,當穀粒經過10小時的浸泡後,帶殼稻穀胚乳中心的水分吸附率為2.55%d.b./hr,去殼稻穀胚乳中心的水分吸附率為7.94% d.b./hr。zh_TW
dc.description.abstractIn this study, we discuss the intra-kernel moisture migration of individual rice kernels by finite element method, and verify the simulated results with magnetic resonance imaging (MRI). Two kinds of rice kernel models were used in our study. The one is the prolate elliptical model and the other is the model based on real rice geometric structure. Functions provided by the COMSOL Multiphysics 3.2 software were used to obtain the real rice models from the MRI images of rice kernel. The simulation results show that the air temperature is the major parameter affecting the drying rate for rice drying. The moisture content on the surface of a rice kernel decreases rapidly and results in significant moisture gradient within the rice kernel when the air temperature for drying is high. The initial temperature of grain and the air velocity are less significant than the air temperature. The differences of moisture content between the bran and the central endosperm were only ±0.1% w.b. after 18 hours drying when the initial temperatures of grain were 25°C and 45°C. The average drying rate increases when the portion of drying time in a circulating drying is increased but the moisture gradient inside the rice kernel also increases at the same time. The moisture gradient can be reduced by increasing tempering time however, and then the fissuring of rice kernel can be improved. If we consider the energy consumption but not the total time of rice drying, the drying efficiency of circulating drying is better when it is implemented by the cyclic processes of short drying time followed by longer tempering time. For example, 20 minutes drying followed by 120 minutes tempering yields better drying efficiency. Beside simulations of drying and tempering process, we discuss the moisture migration of soaking process as well. From the simulating results of soaking of brown rice and rough rice, we found that the diffusion rate of the bran is higher than the hull. Hull layer provides a barrier to rapid absorption of water in rice soaking. The water absorption rate is 2.55% d.b./hr in the endosperm of a rough rice and 7.94% d.b./hr in the endosperm of a brown rice after 10-hour soaking.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:11:02Z (GMT). No. of bitstreams: 1
ntu-96-R94631037-1.pdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究目的 3
第二章 文獻探討 4
2.1稻穀的結構 4
2.2稻穀含水率 6
2.2.1稻穀水分含量表示方法 6
2.2.2稻穀含水率測定方式 6
2.2.3稻穀乾燥 8
2.3磁共振成像 10
2.3.1磁共振成像基礎原理 10
2.3.2穀物磁共振成像相關研究 13
2.4有限元素模擬 17
2.4.1有限元素法簡介 17
2.4.2 COMSOL Multiphysics 3.2軟體介紹 17
2.5穀物內部水分遷移模擬相關研究 19
第三章 材料與方法 22
3.1稻穀磁共振影像之取得 22
3.1.1磁共振成像實驗設備 22
3.1.2磁共振影像資料處理方法 22
3.2單粒稻穀水分遷移數學模型 24
3.2.1乾燥過程 24
3.2.2均化過程 25
3.2.3浸泡過程 26
3.3有限元素分析架構與流程 29
3.3.1二維有限元素分析模型 29
3.3.2水分擴散模擬 34
3.4稻穀含水率量測 37
3.5有限元素模擬之個案整理 38
第四章 結果與討論 40
4.1稻穀乾燥過程模擬 40
4.2稻穀均化過程模擬與驗證 49
4.2.1磁共振影像之驗證 51
4.2.2非理想均化 55
4.2.3間歇式乾燥 60
4.3稻穀浸泡過程模擬與驗證 65
4.4稻穀各部位含水率量測 72
4.5討論 73
第五章 結論與建議 74
5.1結論 74
5.2建議 76
參考文獻 77
附錄A 網格參數設定 82
附錄B 程式碼節錄 83
dc.language.isozh-TW
dc.title單粒稻穀內部水分遷移之有限元素分析與磁振影像驗證zh_TW
dc.titleFinite Element Analysis and MRI Validation of
Intra-Kernel Moisture Migration of Single Rice
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee艾群,馮丁樹,葉仲基
dc.subject.keyword有限元素法,稻穀,水分遷移,磁共振影像,zh_TW
dc.subject.keywordFinite Element Method (FEM),Rice Kernel,Moisture Migration,Magnetic Resonance Imaging (MRI),en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
0 BAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved