Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28525
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁
dc.contributor.authorYi-Chang Luen
dc.contributor.author呂奕璋zh_TW
dc.date.accessioned2021-06-13T00:10:54Z-
dc.date.available2009-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation[1] K. M. Lakin, 'Thin Film Resonator Technology,' Tampa, FL., United States, 2003.
[2] T. C. L. et al., 'Receiver Architectures in Modern Wireless Communication,' Electrical Engineering/GIEE, National Taiwan Universtiy, pp. 3-6, 2005.
[3] S. K. Reynolds, B. A. Floyd, T. Beukema, T. Zwick, U. Pfeiffer, and H. Ainspan, 'A direct-conversion receiver IC for WCDMA mobile systems,' IEEE Journal of Solid-State Circuits, vol. 38, pp. 1555-1560, 2003.
[4] K. M. Lakin and J. S. Wang, 'Acoustic bulk wave composite resonators,' Applied Physics Letters, vol. 38, pp. 125-127, 1981.
[5] C. Vale, J. Rosenbaum, S. Horwitz, S. Krishnaswamy, and R. Moore, 'FBAR Filters at GHZ Frequencies,' Proc. Forty-Fourth Annual Symposium on Frequency Control, pp. 332-336, 1990.
[6] D. Cushman, K. F. Lau, E. M. Garber, K. A. Mai, A. K. Oki, and K. W. Kobayashi, 'SBAR filter monolithically integrated with HBT amplifier,' Honolulu, HI, USA, 1990.
[7] W. C. Dunn, H. M. Liaw, L. Ristic, and R. M. Roop, 'Monolithic Circuit with integrated bulk structure resonator,' U.S. Patent # 5260596, 1993.
[8] R. C. Ruby and P. P. Merchant, 'Tunable thin film acoustic resonators and method for making the same,' U.S. Patent # 5587620, 1996.
[9] R. C. Ruby, 'Post-Fabrication Tuning of Acoustic Resonators,' U.S. Patent #5780713, 1998.
[10] R. C. Ruby and P. P. Merchant, 'Method of making tunable thin film acoustic resonator,' U.S. Patent #5873153, 1999.
[11] P. D. Bradley, J. D. Lason, and R. C. Ruby, 'Duplexer Incorporating Thin Film Bulk Acoustic Resonators,' U.S. Patent # 6262637, 2001.
[12] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, 'High performance and miniature thin film bulk acoustic wave filters for 5 GHz,' presented at Proceedings of the IEEE Ultrasonics Symposium, 2002.
[13] B. P. Otis and J. M. Rabaey, 'A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,' IEEE Journal of Solid-State Circuits, vol. 38, pp. 1271-1274, 2003.
[14] L. Elbrecht, R. Aigner, C. I. Lin, and H. J. Timme, 'Integration of bulk acoustic wave filters: Concepts and trends,' Fort Worth, TX, United States, 2004.
[15] H. Yu, W. Pang, H. Zhang, and E. S. Kim, 'Film bulk acoustic resonator at 4.4 GHz with ultra low temperature coefficient of resonant frequency,' Miami Beach, FL, United States, 2005.
[16] K. Nam, Y. Park, S. Hong, J. Pak, G. Park, and L. Song, 'Mems based bulk acoustic wave resonators for mobile applications,' Shanghai, China, pp. 101-108, 2006.
[17] J. Y. Park, K. H. Lee, and S. J. Cheon, 'Silicon bulk micromachined FBAR filter and duplexer for advanced handset applications,' Microware and Optical Technology Letters, vol. 49, pp. 339-342, 2007.
[18] W. Pang, H. Zhang, S. Whangbo, and E. S. Kim, 'High Q film bulk acoustic resonator from 2.4 to 5.1GHZ,' Maastricht, Netherlands, 2004.
[19] H. Zhang and E. S. Kim, 'Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer,' New Orleans, LA, United States, 2002.
[20] M. Yim, D.-H. Kim, D. Chai, and G. Yoon, 'Significant resonance characteristic improvements by combined use of thermal annealing and Co electrode in ZnO-based FBARs,' Electronics Letters, vol. 39, pp. 1638-1640, 2003.
[21] D. Royer and E. Dieulesaint, 'Elastic Wave in SolidsⅠ,' Springer, pp. 69-88, 1999.
[22] 汪建民,鄭世裕等, 陶瓷技術手冊(上) Ceramic Technology Handbook, 全華科技圖書股份有限公司, pp. 443-444, 1999。
[23] D. Royer and E. Dieulesaint, 'Elastic Wave in SolidsⅠ,' Springer, pp. 119-166, 1999.
[24] J. F. Rosenbaum, 'Bulk Acoustic Wave Theory and Device,' Artech House, Inc., pp. 167-183, 1988.
[25] D. Royer and E. Dieulesaint, 'Elastic Wave in SolidsⅡ,' Springer, pp. 10-14, 1999.
[26] D. Royer and E. Dieulesaint, 'Elastic Wave in SolidsⅡ,' Springer, pp. 46-47, 1999.
[27] 陳培元, 薄膜體型聲波諧振腔與濾波器研究, 2003年台灣石英晶體產業協會會員大會暨高頻壓電元件技術與應用研討會。
[28] L. P. Huelsman, 'Active and Passive Analog Filter Design,' McGraw Hill, Inc., pp. 29-67, 1993.
[29] 袁杰, 高頻電路分析與設計(一), 全威圖書有限公司, pp. 72-80, 民國90年5月。
[30] R. Schaumann, ' Design of Analog Filters,' Oxford University Press, Inc. , pp. 569-599 2001.
[31] R. Schaumann, ' Design of Analog Filters,' Oxford University Press, Inc. , pp. 260, 2001.
[32] 陳培元, 薄膜體型聲波帶通濾波器設計, 中山科學研究院材料暨光電研究所。
[33] 羅吉宗, 薄膜科技與應用, 全華科技,2005。
[34] Michael Quirk, Julian Serda, Semiconductor Manufaturing Technology, Pearson Education Taiwan Ltd.
[35] 莊達仁, VLSI製程技術, 高立書局, 2002。
[36] G. K. Wehner and D. L. Rosenberg, 'Angular Distribution of Sputtered Material,' Journal of Applied Physics, 1960.
[37] Matsuda et al, Japanese Journal of Applied Physics, vol. 23, pp. L567, 1984.
[38] J.N. Broughton et al, IEEE Transactions on Semiconductor Manufacturing, vol. 9, pp. 122, 1996.
[39] H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, 'Preparation of c-Axis Oriented AlN Thin Films by Low-Temperature Reactive Sputtering,' Japanese Journal of Applied Physics, vol. 31, pp. 3446-3451, 1992.
[40] R. Ruby and P. Merchant, 'Micromachined thin film bulk acoustic resonators,' Boston, MA, USA, 1994.
[41] L. Wu, P.C. Chen, S. Wu, H.Y. Song, and M.C. Chure, 'Sputtering Highly C-Axis-Oriented AlN Films on Y-128° LiNbO3 ' Japanese Journal of Applied Physics, vol. 39, pp. L545-L547, 2000.
[42] C.C. Cheng, Y.C. Chen, H.J. Wang, and W.R. Chen, 'Low-temperature growth of aluminum nitride thin films on silicon by reactive radio frequency magnetron sputtering,' Journal of Vacuum Science and Technology A, vol. 14, pp. 2238-2242, 1996.
[43] H. Lee, K.Y. Lee, Y. Yong, J.Y. Lee, and G. Kim, 'Effect of hydrogen addition on the preferred orientation of AlN films prepared by reactive sputtering,' Thin Solid Films, vol. 271, pp. 50-55, 1995.
[44] H. M. Liaw, W. Cronin, and F. S. Hickernell, 'SAW characteristics of sputtered aluminum nitride on silicon,' Baltimore, MD, USA, 1993.
[45] K. M. Lakin and J. S. Wang, 'UHF COMPOSITE BULK WAVE RESONATORS,' Ultrasonics Symposium Proceedings, vol. 2, pp. 834-837, 1980.
[46] 台大奈米中心網站, http://nanost.ntu.edu.tw/get_equ.asp?id=8.
[47] 台大貴儀中心網站, http://www.hic.ch.ntu.edu.tw/.
[48] K. R. Williams and R. S. Muller, 'Etch Rates for Micromachining Processing,' Journal of Microelectromechanical Systems, vol. 5, pp. 256-269., 1996.
[49] K. R. Williams, K. Gupta, and M. Wasilik, 'Etch Rates for Micromachining Processing—Part II,' Journal of Microelectromechanical Systems, pp. 761-778, 2003.
[50] J.-B. Lee, J.-P. Jung, M.-H. Lee, and J.-S. Park, 'Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs,' Thin Solid Films, vol. 447-448, pp. 610-614, 2004.
[51] M. Akiyama, 'Influence of metal electrides on crystal orientation of aluminum nitride thin films,' Vacuum vol. 74, pp. 699-703, 2004.
[52] 陳健興, 氮化鋁薄膜在鈮酸鋰基板上之表面聲波特性, 國立中山大學電機工程研究所碩士論文, 2001。
[53] 楊詠暉, 以反應式磁控濺鍍法低溫濺鍍氮化鋁薄膜之研究, 國立台灣科技大學材料工程研究所碩士論文, 2004。
[54] 黃靜茹, 在底層電極上以常溫成長氮化鋁薄膜之研究, 國立中山大學材料工程研究所碩士論文, 2000。
[55] 宋人豪, C軸取向氮化鋁薄膜應用於鑽石表面聲波濾波器之研究, 國立成功大學材料工程研究所碩士論文, 2004。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28525-
dc.description.abstract隨著通訊系統以及無線感測網路系統的快速發展,體積小、成本低、更具效率的元件急需開發,為達到這個目的,系統單晶片以整合積體電路為目標。然而電路中,被動元件往往會因為矽基材,而損失大部分的能量,譬如說電感的Q值不易提高,而且所佔用的面積也很大。因此,開發適用於RF頻段的薄膜體聲波共振器(FBAR),不但Q值高、面積小,同時也可以和積體電路製程整合。以薄膜體聲波濾波器過濾訊號,比以往表面聲波元件和陶瓷元件更小、更具效率。
此論文以薄膜體聲波濾波器(FBAR Filter)與CMOS積體電路整合電路為目的,利用氮化鋁壓電薄膜製作薄膜體聲波濾波器。壓電薄膜的成長在FBAR扮演極為重要的角色,使用濺鍍法(Sputtering)作為我們氮化鋁壓電薄膜成長的方法,其優點為低溫製程,在IC的製程當中溫度不能太高,以避免傷害到電路,而濺度法可以將溫度控制在300°C以下,是最好的選擇。為了濺鍍出具有良好的C軸擇優取向(C-axis Preferred Orientation),須找出良好的製程參數,其製程的參數是決定薄膜的晶格方向重要因素,製程參數有晶片溫度、靶材到晶片的距離、氮氣與氬氣的比例、氣體流量、power、製程壓力、預鍍時間和濺鍍時間。不同的參數會造成不同的薄膜特性,如何控制準確的機台參數,為此研究的關鍵技術。
將濾波器與其他積體電路整合,是完成單晶片系統整合之前的必經之路。所以未來發展趨勢,必先奠基於面積小、低損耗、高Q值、可承受高功率的濾波器,接著則是把品質優良的濾波器與其他微波元件整合,以達成系統單晶片的最終目的。本研究即是將分析、設計優良的FBAR濾波器視為基礎工作,與其他通訊元件整合才是最終目標。
zh_TW
dc.description.abstractDue to the great demands posed by mobile communication systems and sensor network systems, smaller, cheaper, and more efficient devices are required. However, passive elements, such as inductors, usually suffer from great loss in silicon substrate. A thin film bulk acoustic wave resonator (FBAR) is a solution for this problem because of its high-Q, smaller volume, and integration compatibility. Meanwhile, it has been demonstrated that at higher frequencies a filter composed of FBARs is superior to a surface acoustic wave (SAW) filter and ceramic filter. The foci of this thesis are Film Bulk Acoustic Wave Filters (FBAW Filter) and CMOS integrated circuits. I will demonstrate that using AlN piezoelectric film produces Film Bulk Acoustic Wave Filters. Growing piezoelectric thin film plays a very important role in FBAR. We use sputtering method to grow AlN thin film. The advantage of a low temperature process, in which IC manufacturing is not performed at high temperature, is that it avoids harming the circuit. A sputtering temperature that can be controlled at 300 ° C below, is the best option. To sputtering with good C-axis Preferred Orientation, we must identify good manufacturing parameters. The parameters are very important factors in determining the direction of the lattice films. The parameters include chip temperature, chip to target distance, nitrogen and argon ratio of the gas flow, power, pressure, pre-sputtering and sputtering time. The means of accurately controlling the parameters are the key technologies in this study. Integrated filter and other circuit is complete single-chip system integration before the pass. Therefore, future development must first stem from the small size, low-loss, high Q-value, and affordable high-power filter. Subsequently, there can be further integration of the optimal quality of the filter with other microwave components, to achieve the final goal of a system on a chip (SOC).en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:10:54Z (GMT). No. of bitstreams: 1
ntu-96-R94543003-1.pdf: 3691842 bytes, checksum: 6f6ec450c15834c0f8d60522b6d2ef86 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝
中文摘要
Abstract
目錄 i
圖目錄 iv
表目錄 viii
第1章 導論 1
1.1 研究動機 1
1.1.1 薄膜體聲波濾波器之優點 1
1.1.2 研究內容對於系統單晶片化發展之貢獻 2
1.2 文獻回顧與探討 4
1.3 論文架構 6
第2章 薄膜體聲波濾波器之原理與設計 8
2.1 壓電原理與本構方程式 9
2.2 聲波波動方程式 11
2.2.1 非壓電材料之一維波動方程 11
2.2.2 壓電材料之一維波動方程 12
2.3 Mason等效電路 14
2.3.1 非壓電平板的Mason等效電路 14
2.3.2 壓電平板的Mason等效電路 17
2.4 使用Mason等效電路分析體聲波壓電薄膜共振器之特性 20
2.5 薄膜體聲波濾波器之理論與模擬分析 23
2.5.1 階梯式濾波器之設計方法 23
2.5.2 以階梯式濾波器設計方法應用於薄膜體聲波濾波器之設計 24
第3章 壓電薄膜製備與量測原理 27
3.1 濺鍍原理 27
3.1.1 電漿粒子在表面的反應作用 27
3.1.2 濺射產能 29
3.1.3 二次電子 31
3.2 濺鍍系統 31
3.2.1 直流式電漿濺鍍系統 32
3.2.2 交流式電漿濺鍍系統 34
3.2.3 磁控式電漿濺鍍系統 36
3.2.4 反應式濺鍍系統 37
3.3 C軸取向氮化鋁壓電薄膜成長條件分析 40
3.3.1 靶材到晶片的距離 42
3.3.2 氮氣與氬氣氣體流量之比例 42
3.3.3 基材溫度 42
3.3.4 RF濺鍍功率 43
3.3.5 背景壓力 43
3.3.6 製程壓力 44
3.3.7 預鍍時間和濺鍍時間 44
3.4 量測儀器與原理簡介 46
3.4.1 X光粉末繞射儀 46
3.4.2 掃描式電子顯微鏡 50
3.4.3 能量散佈分析儀 51
3.4.4 歐傑電子影像能譜儀 51
第4章 實驗步驟與元件製作 52
4.1 AlN壓電薄膜製備 52
4.1.1 實驗機台 53
4.1.2 晶片清洗 55
4.1.3 濺鍍參數設定與萃取 56
4.1.4 X光粉末繞射分析薄膜 56
4.1.5 掃描式電子顯微鏡分析薄膜 57
4.1.6 歐傑電子影像能譜儀 57
4.2 FBAR製程步驟 58
4.2.1 光罩設計 61
4.2.2 晶片清潔 62
4.2.3 定義犧牲層 62
4.2.4 定義下電極與加厚下電極導線 66
4.2.5 Buffer Layer沉積 71
4.2.6 沉積壓電層 72
4.2.7 定義上電極與加厚上電極導線 75
4.2.8 定義調頻層 80
4.2.9 定義蝕刻孔 83
4.2.10淘空犧牲層 86
第5章 實驗結果與訊號量測分析 90
5.1 製程結果探討 90
5.1.1 氮化鋁參數萃取部份 90
5.1.2 薄膜體聲波濾波器部份 99
5.2 量測結果與分析 104
5.2.1 元件壓電薄膜品質量測 104
5.2.2 元件訊號量測與分析 106
第6章 結論與未來展望 113
6.1 氮化鋁壓電薄膜沉積測試 113
6.2 薄膜體聲波濾波器製作 113
6.3 未來工作 113
參考文獻 114
dc.language.isozh-TW
dc.title以氮化鋁為壓電薄膜之高頻薄膜體聲波濾波器研製zh_TW
dc.titleHigh Frequency Film Bulk Acoustic Wave Filter Using AlN as the Piezoelectric Layeren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡毓忠,李其源,施文彬
dc.subject.keyword薄膜體聲波共振器,薄膜體聲波濾波器,氮化鋁壓電薄膜,系統單晶片,zh_TW
dc.subject.keywordFBAR,FBAR filter,AlN,SOC,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved