Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恩仲
dc.contributor.authorChing-Yi Lienen
dc.contributor.author練慶儀zh_TW
dc.date.accessioned2021-06-13T00:10:11Z-
dc.date.available2008-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citationAltschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J Mol Biol 215: 403-410.
Asano, K., T. G. Kinzy, W. C. Merrick, and J. W. Hershey. 1997a. Conservation and diversity of eukaryotic translation initiation factor EIF3. J Biol Chem 272: 1101-1109.
Asano, K., H. P. Vornlocher, N. J. Richter-Cook, W. C. Merrick, A. G. Hinnebusch, and J. W. Hershey. 1997b. Structure of cdnas encoding human eukaryotic initiation factor 3 subunits. Possible roles in rna binding and macromolecular assembly. J Biol Chem 272: 27042-27052.
Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. 2000. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet 25: 25-29.
Barlow, P., D. A. Owen, and C. Graham. 1972. DNA synthesis in the preimplantation mouse embryo. J Embryol Exp Morphol 27: 431-445.
Bertram, M. J. N., G. Berube, X. Hang-Swanson, Q. Ran, J. K. Leung, S. Bryce, K. Spurgers, R. J. Bick, A. Baldini, Y. Ning, L. J. Clark, E. K. Parkinson, J. C. Barrett, J. R. Smith, and O. M. Pereira-Smith. 1999. Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes. Mol Cell Biol 19: 1479-1485.
Bertram, M. J., and O. M. Pereira-Smith. 2001. Conservation of the MORF4 related gene family: Identification of a new chromo domain subfamily and novel protein motif. Gene 266: 111-121.
Blanco, G., and R. W. Mercer. 1998. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol 275: F633-650.
Bonaldo, M. F., G. Lennon, and M. B. Soares. 1996. Normalization and subtraction: Two approaches to facilitate gene discovery. Genome Res 6: 791-806.
Braude, P., V. Bolton, and S. Moore. 1988. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332: 459-461.
Brown, J. L., D. Mucci, M. Whiteley, M. L. Dirksen, and J. A. Kassis. 1998. The Drosophila polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1: 1057-1064.
Bultman, S., T. Gebuhr, D. Yee, C. La Mantia, J. Nicholson, A. Gilliam, F. Randazzo, D. Metzger, P. Chambon, G. Crabtree, and T. Magnuson. 2000. A BRG1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287-1295.
Ciciotte, S. L., F. Y. Tsai, and L. L. Peters. 1997. GATA2 maps to mouse chromosome 6. Mamm Genome 8: 69-70.
Confalonieri, F., and M. Duguet. 1995. A 200-amino acid ATPase module in search of a basic function. Bioessays 17: 639-650.
Craven, S. E., K. C. Lim, W. Ye, J. D. Engel, F. de Sauvage, and A. Rosenthal. 2004. GATA2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131: 1165-1173.
D'Urso, G., R. L. Marraccino, D. R. Marshak, and J. M. Roberts. 1990. Cell cycle control of DNA replication by a homologue from human cells of the p34CDC2 protein kinase. Science 250: 786-791.
Dalton, S. 1992. Cell cycle regulation of the human CDC2 gene. Embo J 11: 1797-1804.
Dhillon, N., and M. F. Hoekstra. 1994. Characterization of two protein kinases from schizosaccharomyces pombe involved in the regulation of DNA repair. Embo J 13: 2777-2788.
Donohoe, M. E., X. Zhang, L. McGinnis, J. Biggers, E. Li, and Y. Shi. 1999. Targeted disruption of mouse YIN YANG 1 transcription factor results in peri-implantation lethality. Mol Cell Biol 19: 7237-7244.
Dorfman, D. M., D. B. Wilson, G. A. Bruns, and S. H. Orkin. 1992. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem 267: 1279-1285.
Draetta, G. 1990. Cell cycle control in eukaryotes: Molecular mechanisms of CDC2 activation. Trends Biochem Sci 15: 378-383.
Dyce, J., M. George, H. Goodall, and T. P. Fleming. 1987. Do trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages? Development 100: 685-698.
El Wakil, A., C. Francius, A. Wolff, J. Pleau-Varet, and J. Nardelli. 2006. The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors. Development 133: 2155-2165.
Etches, R. J., M. E. Clark, A. Toner, G. Liu, and A. M. Gibbins. 1996. Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Mol Reprod Dev 45: 291-298.
Fish, K. J., A. Cegielska, M. E. Getman, G. M. Landes, and D. M. Virshup. 1995. Isolation and characterization of human casein kinase I ε, a novel member of the CKI gene family. J Biol Chem 270: 14875-14883.
Fleming, T. P. 1987. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol 119: 520-531.
Fleming, T. P., B. Sheth, and I. Fesenko. 2001. Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front Biosci 6: D1000-1007.
Fujiwara, Y., C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin. 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93: 12355-12358.
Gilbert, S. F. 2006. Developmental Biology, 8th ed. Sunderland, MA: Sinauer Associates, Inc.
Gordon, S., G. Akopyan, H. Garban, and B. Bonavida. 2006. Transcription factor YY1: Structure, function, and therapeutic implications in cancer biology. Oncogene 25: 1125-1142.
Gross, S. D., C. Simerly, G. Schatten, and R. A. Anderson. 1997. A casein kinase I isoform is required for proper cell cycle progression in the fertilized mouse oocyte. J Cell Sci 110 ( Pt 24): 3083-3090.
Gururajan, R., J. M. Lahti, J. Grenet, J. Easton, I. Gruber, P. F. Ambros, and V. J. Kidd. 1998. Duplication of a genomic region containing the CDC2l1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to d1z2. Genome Res 8: 929-939.
Hathaway, G. M., and J. A. Traugh. 1979. Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Purification of casein kinases. J Biol Chem 254: 762-768.
Hayles, J., and P. Nurse. 1986. Cell cycle regulation in yeast. J Cell Sci Suppl 4: 155-170.
Hillier, L. D. G. Lennon, M. Becker, M. F. Bonaldo, B. Chiapelli, S. Chissoe, N. Dietrich, T. DuBuque, A. Favello, W. Gish. et al. 1996. Generation and analysis of 280,000 human expressed sequence tags. Genome Res 6: 807-828.
Hu, D., A. Mayeda, J. H. Trembley, J. M. Lahti, and V. J. Kidd. 2003. Cdk11 complexes promote pre-mRNA splicing. J Biol Chem 278: 8623-8629.
Issinger, O. G. 1993. Casein kinases: Pleiotropic mediators of cellular regulation. Pharmacol Ther 59: 1-30.
Johnson, M. H., B. Maro, and M. Takeichi. 1986. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J Embryol Exp Morphol 93: 239-255.
Kaufman, M. H. 1995. The atlas of mouse development.
Kelley, C., K. Yee, R. Harland, and L. I. Zon. 1994. Ventral expression of GATA-1 and GATA -2 in the xenopus embryo defines induction of hematopoietic mesoderm. Dev Biol 165: 193-205.
Kelly, J. M., and B. W. McBride. 1990. The sodium pump and other mechanisms of thermogenesis in selected tissues. Proc Nutr Soc 49: 185-202.
Kidder, G. M. 1992. The genetic program for preimplantation development. Dev Genet 13: 319-325.
Kimball, S. R., L. M. Shantz, R. L. Horetsky, and L. S. Jefferson. 1999. Leucine regulates translation of specific mRNAs in l6 myoblasts through mTOR-mediated changes in availability of EIF4e and phosphorylation of ribosomal protein S6. J Biol Chem 274: 11647-11652.
Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310.
Kimmel, C. B., and R. D. Law. 1985. Cell lineage of zebrafish blastomeres. Ii. Formation of the yolk syncytial layer. Dev Biol 108: 86-93.
Kitajima, K., M. Masuhara, T. Era, T. Enver, and T. Nakano. 2002. GATA -2 and GATA -2/er display opposing activities in the development and differentiation of blood progenitors. Embo J 21: 3060-3069.
Kurisaki, K., A. Kurisaki, U. Valcourt, A. A. Terentiev, K. Pardali, P. Ten Dijke, C. H. Heldin, J. Ericsson, and A. Moustakas. 2003. Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol Cell Biol 23: 4494-4510.
Larsen, E., and H. M. McLaughlin. 1987. The morphogenetic alphabet: Lessons for simple-minded genes. Bioessays 7: 130-132.
Lee, J. W., H. S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol 9: 243-254.
Leese, H. J. 1995. Metabolic control during preimplantation mammalian development. Hum Reprod Update 1: 63-72.
Lew, J., Z. Qi, Q. Q. Huang, H. Paudel, I. Matsuura, M. Matsushita, X. Zhu, and J. H. Wang. 1995. Structure, function, and regulation of neuronal CDC2-like protein kinase. Neurobiol Aging 16: 263-268; discussion 268-270.
Li, T., A. Inoue, J. M. Lahti, and V. J. Kidd. 2004. Failure to proliferate and mitotic arrest of cdk11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development. Mol Cell Biol 24: 3188-3197.
Makino, Y., S. Yogosawa, M. Kanemaki, T. Yoshida, K. Yamano, T. Kishimoto, V. Moncollin, J. M. Egly, M. Muramatsu, and T. Tamura. 1996. Structures of the rat proteasomal atpases: Determination of highly conserved structural motifs and rules for their spacing. Biochem Biophys Res Commun 220: 1049-1054.
Marcote, M. J., M. Pagano, and G. Draetta. 1992. CDC2 protein kinase: Structure-function relationships. Ciba Found Symp 170: 30-41; discussion 41-39.
Maridor, G., W. Park, W. Krek, and E. A. Nigg. 1991. Casein kinase II. Cdna sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha', and beta subunits of the chicken enzyme. J Biol Chem 266: 2362-2368.
Martin, P. M., and A. E. Sutherland. 2001. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 240: 182-193.
Methot, N., A. Pause, J. W. Hershey, and N. Sonenberg. 1994. The translation initiation factor EIF-4b contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol Cell Biol 14: 2307-2316.
Methot, N., M. S. Song, and N. Sonenberg. 1996. A region rich in aspartic acid, arginine, tyrosine, and glycine mediates eukaryotic initiation factor 4b (EIF4b) self-association and interaction with eif3. Mol Cell Biol 16: 5328-5334.
Minegishi, N., J. Ohta, H. Yamagiwa, N. Suzuki, S. Kawauchi, Y. Zhou, S. Takahashi, N. Hayashi, J. D. Engel, and M. Yamamoto. 1999. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 93: 4196-4207.
Molkentin, J. D., Q. Lin, S. A. Duncan, and E. N. Olson. 1997. Requirement of the transcription factor gata4 for heart tube formation and ventral morphogenesis. Genes Dev 11: 1061-1072.
Molkentin, J. D., K. M. Tymitz, J. A. Richardson, and E. N. Olson. 2000. Abnormalities of the genitourinary tract in female mice lacking GATA-5. Mol Cell Biol 20: 5256-5260.
Morgan, M. J., J. M. Woltering, P. M. In der Rieden, A. J. Durston, and J. P. Thiery. 2004. YY1 regulates the neural crest-associated slug gene in xenopus laevis. J Biol Chem 279: 46826-46834.
Morrisey, E. E., Z. Tang, K. Sigrist, M. M. Lu, F. Jiang, H. S. Ip, and M. S. Parmacek. 1998. GATA 6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12: 3579-3590.
Patten, B. M. 1971. Early embryology of the cick.
Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85: 2444-2448.
Peters, J. M. 1994. Proteasomes: Protein degradation machines of the cell. Trends Biochem Sci 19: 377-382.
Peyrieras, N., F. Hyafil, D. Louvard, H. L. Ploegh, and F. Jacob. 1983. Uvomorulin: A nonintegral membrane protein of early mouse embryo. Proc Natl Acad Sci U S A 80: 6274-6277.
Piko, L., and K. B. Clegg. 1982. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol 89: 362-378.
Pollet, N., N. Muncke, B. Verbeek, Y. Li, U. Fenger, H. Delius, and C. Niehrs. 2005. An atlas of differential gene expression during early xenopus embryogenesis. Mech Dev 122: 365-439.
Pontius, J. U., L. Wagner, and G. D. Schuler. 2003. Unigene: A unified view of the transcriptome. The NCBI Handbook.
Rhoads, R. E. 1993. Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 268: 3017-3020.
Rowles, J., C. Slaughter, C. Moomaw, J. Hsu, and M. H. Cobb. 1991. Purification of casein kinase I and isolation of cdnas encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci U S A 88: 9548-9552.
Senger, P. L. 2003. Pathways to pregnancy and parturition, 2nd ed. NE Eastgate Blvd., Pullman, WA: Current Conceptions, Inc.
Shirayoshi, Y., T. S. Okada, and M. Takeichi. 1983. The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell 35: 631-638.
Tanaka, S., T. Kunath, A. K. Hadjantonakis, A. Nagy, and J. Rossant. 1998. Promotion of trophoblast stem cell proliferation by FGF4. Science 282: 2072-2075.
Theiler, K. 1972. The house mouse: Development and normal stages from fertilization to 4 weeks of age.
Ting, C. N., M. C. Olson, K. P. Barton, and J. M. Leiden. 1996. Transcription factor GATA-3 is required for development of the t-cell lineage. Nature 384: 474-478.
Tominaga, K., B. Kirtane, J. G. Jackson, Y. Ikeno, T. Ikeda, C. Hawks, J. R. Smith, M. M. Matzuk, and O. M. Pereira-Smith. 2005. MRGL5 regulates embryonic development and cell proliferation. Mol Cell Biol 25: 2924-2937.
Tong, Q., G. Dalgin, H. Xu, C. N. Ting, J. M. Leiden, and G. S. Hotamisligil. 2000. Function of gata transcription factors in preadipocyte-adipocyte transition. Science 290: 134-138.
Trembley, J. H., D. Hu, L. C. Hsu, C. Y. Yeung, C. Slaughter, J. M. Lahti, and V. J. Kidd. 2002. Pitslre p110 protein kinases associate with transcription complexes and affect their activity. J Biol Chem 277: 2589-2596.
Tsai, F. Y., G. Keller, F. C. Kuo, M. Weiss, J. Chen, M. Rosenblatt, F. W. Alt, and S. H. Orkin. 1994. An early haematopoietic defect in mice lacking the transcription factor gata-2. Nature 371: 221-226.
Tsai, F. Y., and S. H. Orkin. 1997. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89: 3636-3643.
Turner, K., K. L. Martin, B. J. Woodward, E. A. Lenton, and H. J. Leese. 1994a. Comparison of pyruvate uptake by embryos derived from conception and non-conception natural cycles. Hum Reprod 9: 2362-2366.
Turner, K., A. W. Rogers, and E. A. Lenton. 1994b. Effect of culture in vitro and organ culture on the dry mass of preimplantation mouse embryos. Reprod Fertil Dev 6: 229-234.
Watson, A. J., C. H. Damsky, and G. M. Kidder. 1990. Differentiation of an epithelium: Factors affecting the polarized distribution of na+,k(+)-atpase in mouse trophectoderm. Dev Biol 141: 104-114.
Watson, A. J., and G. M. Kidder. 1988. Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Dev Biol 126: 80-90.
Wieschaus, E. 1996. Embryonic transcription and the control of developmental pathways. Genetics 142: 5-10.
Zhai, L., P. R. Graves, L. C. Robinson, M. Italiano, M. R. Culbertson, J. Rowles, M. H. Cobb, A. A. DePaoli-Roach, and P. J. Roach. 1995. Casein kinase I γ subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the saccharomyces cerevisiae YCK genes. J Biol Chem 270: 12717-12724.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28503-
dc.description.abstract哺乳類動物早期胚發育時期泛指從受精卵到胚胎埋植入子宮前的發育階段,此階段包括了受精卵在生長、遷移、分化及形態上的變化等,是脊椎動物發育過程中的重要階段之一。公開資料庫中脊椎動物早期胚發育時期之相關基因庫,發現目前大部分物種在胚早期發育時期的研究甚少,某些物種甚至闕如。有鑑於此,本研究旨為利用現存於公開資料庫之脊椎動物胚早期發育的有限資料,找出脊椎動物物種間胚早期發育時期的共同表現基因,並進一步分析其相關功能,期能增加對脊椎動物在胚早期發育階段基因表現的暸解。
利用NCBI(National Center for Biotechnology Information)的UniGene資料庫和TIGR(The Institute for Genomic Research)的Gene Index資料庫分別收集牛(Bos taurus)、小鼠(Mus musculus)、豬(Sus scrofa)和非洲爪蟾(Xenopus laevis)四個物種在早期胚發育時期的基因庫。篩選上述基因庫中四物種之早期胚表現基因序列總數分別為:小鼠:13,705條、牛:2,407條、豬:4,015條和非洲爪蟾:15,329條。藉由序列比對工具BLAST(Basic Local Alignment Search Tool),以小鼠的早期胚表現基因序列資料為基礎對其他三物種之序列資料庫進行序列相似性分析。分析結果將四物種間共同表現基因分為七大群組,其總數分別為:小鼠與牛共同表現者:1,414條、小鼠與豬共同表現者:1,909條、小鼠與非洲爪蟾共同表現者:2,372條、小鼠、牛與豬共同表現者:411條、小鼠、牛與非洲爪蟾共同表現者:602條、小鼠、豬與非洲爪蟾共同表現者:860條和小鼠、豬、牛與非洲爪蟾共同表現者:254條。進一步分析物種間共同表現基因所具備之功能,利用三組共同表現基因:小鼠與豬、小鼠與非洲爪蟾以及小鼠、牛、豬與非洲爪蟾之共同表現者,分別以小鼠之共同表現基因身份為代表進行功能性解析。結果顯示,四個物種之共同表現基因在三大功能分項:生物作用(biological process, P)、分子功能(molecular function, F)和細胞組成(cellular component, C)分析中分別有112(P)、113(F)和105(C)個共同表現基因具有功能性註解;小鼠與豬之共同表現基因在三大功能分項分析中分別有857(P)、926(F)和862(C)個共同表現基因具有功能性註解;小鼠與非洲爪蟾之共同表現基因在三大功能分項分析中分別有1,208(P)、1,281(F)和1,145(C)個共同表現基因具有功能性註解。就生物作用分項分析結果而言,物種間共同表現基因的功能主要以參與代謝過程(meatabolic process)為主;在分子功能方面主要牽涉細胞分子鍵結(molecular binding);而細胞組成功能分項也顯示共同表現基因的表現主要以細胞內為主。
利用生物資訊比對工具及公開資料庫可針對不同物種間之早期胚表現基因進行同源性比較篩選,所得之結果將有助生物學者廣泛瞭解脊椎動物在早期胚發育過程中的共同表現基因及所具備之相關功能。
zh_TW
dc.description.abstractThe early embryonic stages of mammals are the developmental process from zygote to preimplantation. The stages of embryogenesis are critical for embryonic development in vertebrates. Several key developmental events occurr in these stages, such as cell growth, migration, differentiation, and morphogenesis. In spite of the importance occurring in the early embryogenesis, limited information has been provided by previous studies. For this reason, the purpose of this study is to utilize the public databases to screen those commonly expressed genes with their related functions at early embryonic stages in vertebrates.
The UniGene and the Gene Index databases in the National Center for Biotechnology Information (NCBI) and The Institute for Genomic Research (TIGR) were designed to collect and assemble sequences of expressed sequences tags (ESTs) and mRNA. Each assembled entry is a set of transcript sequences that appear to come from the same transcription locus. The numbers of unigene entries and tentative consensuses (TC) of embryos before implantation collected from Bos taurus (Bt), Mus musculus (Mm), Sus scrofa (Ssc) and Xenopus laevis (Xl) were 2,407, 13,705, 4,015, and 15,329, respectively. The analytic results among four species were divided into seven groups. All of the commonly expressed genes were 1,414 for Mm and Bt; 1,909 for Mm and Ssc; 2,372 for Mm and Xl; 411 for Mm, Bt and Ssc; 602 for Mm, Bt and Xl and 860 for Mm, Ssc and Xl. However, there were 254 genes commonly expressed in all these four species. Furthermore, the unigenes of Mm were classified according to the Gene Ontology (GO) by three categories: biological process (P), molecular function (F) and cellular component (C). The results among Mm, Bt, Ssc and Xl showed the entries with GO identifiers were 112 (P), 113 (F) and 105 (C); the results between Mm and Ssc showed the entries with GO identifiers were 857 (P), 926 (F) and 862 (C); the results between Mm and Xl showed the entries with GO identifiers were 1,208 (P), 1,281 (F) and 1,145 (C). For the entries that mapped to biological processes, most of them with their functional annotations were related to metabolic processes. For molecular function, most of the commonly expressed genes were related to some macromolecule or ion binding. In addition, these activated genes are expressed intracellularly at early developmental stages.
The commonly expressed genes and their related functions might be annotated using comparison tool among sequence databases of different species. The analytical procedure would assist animal scientists to screen the conserved genes with fundamental roles and functions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:10:11Z (GMT). No. of bitstreams: 1
ntu-96-R94626008-1.pdf: 2046433 bytes, checksum: 22bf241a3685ab900fb9563a4f72443f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄……………………………………………………………………………………..I
圖次…………………………………………………………………………………… III
表次……………………………………………………………………………………IV
中文摘要……………………………………………………………………………….V
英文摘要…………………………………………………………………………… .VII
壹、緒言……………………………………………………………………………… 1
貳、文獻檢討………………………………………………………………………… 2
一、早期胚發育過程概述……………………………………………………… 2
二、脊椎動物胚胎埋植前發育過程…………………………………………… 4
三、脊椎動物早期胚發育階段之調控機制……………………..…………… 12
四、資料庫及分析工具簡介……………………………………..…………… 13
參、材料與方法……………………………………………………………..……… 22
一、收集脊椎動物早期胚之表現基因序列.......................................................22
二、脊椎動物早期胚之共同表現基因篩選.......................................................32
三、脊椎動物早期胚共同表現基因之功能性解析...........................................33
肆、結果…………………………………………………………..………………… 35
一、小鼠、牛、豬和非洲爪蟾四個物種間之早期胚共同表現基因...............35
二、物種間共同表現基因之功能性解析...........................................................38
伍、討論…………………………………………………………………..…….……48
一、蛋白質代謝過程...........................................................................................48
二、胚胎發育.......................................................................................................60
三、細胞分化…………………………………………………………………...63
四、細胞生長調控...............................................................................................66
陸、結論……………………………………………………………………………… 69
柒、參考文獻………………………………………………………………………… 70
捌、附錄……………………………………………………………………………78
dc.language.isozh-TW
dc.subject脊椎動物zh_TW
dc.subject共同表現基因zh_TW
dc.subject早期胚發育zh_TW
dc.subject功能性解析zh_TW
dc.subjectFunctional annotationen
dc.subjectCommonly expressed genesen
dc.subjectEarly embryonic developmenten
dc.subjectVertebratesen
dc.title利用脊椎動物cDNA組之同源性比較找出胚早期發育共同表現的基因及其相關功能zh_TW
dc.titleHomology Comparison of the cDNA Sequences in Vertebrates for Screening the Commonly Expressed Genes with Related Functions during Early Embryonic Stagesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭登貴,黃乾綱,李士傑
dc.subject.keyword共同表現基因,早期胚發育,功能性解析,脊椎動物,zh_TW
dc.subject.keywordCommonly expressed genes,Early embryonic development,Functional annotation,Vertebrates,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved