Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28493
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林光華(Kwan-Hwa Lin)
dc.contributor.authorYing-Chen Chenen
dc.contributor.author陳盈蓁zh_TW
dc.date.accessioned2021-06-13T00:09:54Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-28
dc.identifier.citation1. Clinical assessment after acute cervical spinal cord injury. Neurosurgery 50: S21-29, 2002.
2. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, and Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92: 2309-2318, 2002.
3. Allman BL and Rice CL. Perceived exertion is elevated in old age during an isometric fatigue task. Eur J Appl Physiol 89: 191-197, 2003.
4. Babault N, Desbrosses K, Fabre MS, Michaut A, and Pousson M. Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol 100: 780-785, 2006.
5. Burke RE, Levine DN, Tsairis P, and Zajac FE, 3rd. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234: 723-748, 1973.
6. Cameron T and Calancie B. Mechanical and fatigue properties of wrist flexor muscles during repetitive contractions after cervical spinal cord injury. Archives of physical medicine and rehabilitation 76: 929-933, 1995.
7. Carr JH and Shepherd RB. Neurological Rehabiltation:Optimizing Motor Performance. 2002.
8. Catz A, Greenberg E, Itzkovich M, Bluvshtein V, Ronen J, and Gelernter I. A new instrument for outcome assessment in rehabilitation medicine: Spinal cord injury ability realization measurement index. Arch Phys Med Rehabil 85: 399-404, 2004.
9. Catz A, Itzkovich M, Agranov E, Ring H, and Tamir A. SCIM--spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord 35: 850-856, 1997.
10. Catz A, Itzkovich M, Agranov E, Ring H, and Tamir A. The spinal cord independence measure (SCIM): sensitivity to functional changes in subgroups of spinal cord lesion patients. Spinal Cord 39: 97-100, 2001.
11. Catz A, Itzkovich M, Steinberg F, Philo O, Ring H, Ronen J, Spasser R, Gepstein R, and Tamir A. The Catz-Itzkovich SCIM: a revised version of the Spinal Cord Independence Measure. Disabil Rehabil 23: 263-268, 2001.
12. Chao YF, Chen SY, Lan C, and Lai JS. The cardiorespiratory response and energy expenditure of Tai-Chi-Qui-Gong. Am J Chin Med 30: 451-461, 2002.
13. Christou EA, Yang Y, and Rosengren KS. Taiji training improves knee extensor strength and force control in older adults. J Gerontol A Biol Sci Med Sci 58: 763-766, 2003.
14. Cotman CW and Nieto-Sampedro M. Brain function, synapse renewal, and plasticity. Annu Rev Psychol 33: 371-401, 1982.
15. Dousset E and Jammes Y. Reliability of burst superimposed technique to assess central activation failure during fatiguing contraction. J Electromyogr Kinesiol 13: 103-111, 2003.
16. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, and Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27: 145-167, 2004.
17. Fontana JA, Colella C, Wilson BR, and Baas L. The energy costs of a modified form of T'ai Chi exercise. Nurs Res 49: 91-96, 2000.
18. Funase K, Higashi T, Yoshimura T, Imanaka K, and Nishihira Y. Evident difference in the excitability of the motoneuron pool between normal subjects and patients with spasticity assessed by a new method using H-reflex and M-response. Neurosci Lett 203: 127-130, 1996.
19. Gandevia SC, Allen GM, Butler JE, and Taylor JL. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490 ( Pt 2): 529-536, 1996.
20. Gondin J, Guette M, Ballay Y, and Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 37: 1291-1299, 2005.
21. Gresham GE, Labi ML, Dittmar SS, Hicks JT, Joyce SZ, and Stehlik MA. The Quadriplegia Index of Function (QIF): sensitivity and reliability demonstrated in a study of thirty quadriplegic patients. Paraplegia 24: 38-44, 1986.
22. Hiersemenzel LP, Curt A, and Dietz V. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54: 1574-1582, 2000.
23. Higashi T, Funase K, Kusano K, Tabira T, Harada N, Sakakibara A, and Yoshimura T. Motoneuron pool excitability of hemiplegic patients: assessing recovery stages by using H-reflex and M response. Arch Phys Med Rehabil 82: 1604-1610, 2001.
24. Hoffman LR and Field-Fote EC. Cortical reorganization following bimanual training and somatosensory stimulation in cervical spinal cord injury: a case report. Physical therapy 87: 208-223, 2007.
25. Hunter SK, Critchlow A, Shin IS, and Enoka RM. Men are more fatigable than strength-matched women when performing intermittent submaximal contractions. J Appl Physiol 96: 2125-2132, 2004.
26. Hunter SK, Duchateau J, and Enoka RM. Muscle fatigue and the mechanisms of task failure. Exerc Sport Sci Rev 32: 44-49, 2004.
27. Klein PJ and Adams WD. Comprehensive therapeutic benefits of Taiji: a critical review. Am J Phys Med Rehabil 83: 735-745, 2004.
28. Komiyama T, Kawai K, and Fumoto M. The excitability of a motoneuron pool assessed by the H-reflex method is correlated with the susceptibility of Ia terminals to repetitive discharges in humans. Brain research 826: 317-320, 1999.
29. Kouzaki M, Shinohara M, and Fukunaga T. Non-uniform mechanical activity of quadriceps muscle during fatigue by repeated maximal voluntary contraction in humans. Eur J Appl Physiol Occup Physiol 80: 9-15, 1999.
30. Lan C, Chou SW, Chen SY, Lai JS, and Wong MK. The aerobic capacity and ventilatory efficiency during exercise in Qigong and Tai Chi Chuan practitioners. Am J Chin Med 32: 141-150, 2004.
31. Lan C, Lai JS, Chen SY, and Wong MK. 12-month Tai Chi training in the elderly: its effect on health fitness. Med Sci Sports Exerc 30: 345-351, 1998.
32. Lan C, Lai JS, Wong MK, and Yu ML. Cardiorespiratory function, flexibility, and body composition among geriatric Tai Chi Chuan practitioners. Arch Phys Med Rehabil 77: 612-616, 1996.
33. Li JX, Hong Y, and Chan KM. Tai chi: physiological characteristics and beneficial effects on health. Br J Sports Med 35: 148-156, 2001.
34. Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, and Schieppati M. Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J Appl Physiol 90: 3-9, 2001.
35. Nielsen J, Crone C, and Hultborn H. H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol Occup Physiol 66: 116-121, 1993.
36. Nordlund MM, Thorstensson A, and Cresswell AG. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. J Appl Physiol 96: 218-225, 2004.
37. Paillard T, Noe F, Passelergue P, and Dupui P. Electrical stimulation superimposed onto voluntary muscular contraction. Sports Med 35: 951-966, 2005.
38. Patterson MM and Grau JW. Spinal Cord Plasticity:Alternations in Reflex Function. Norwell: Kluwer Academic Publishers, 2001.
39. Rochcongar P, Dassonville J, and Le Bars R. [Modification of the Hoffmann reflex in function of athletic training (author's transl)]. Eur J Appl Physiol Occup Physiol 40: 165-170, 1979.
40. Scaglioni G, Ferri A, Minetti AE, Martin A, Van Hoecke J, Capodaglio P, Sartorio A, and Narici MV. Plantar flexor activation capacity and H reflex in older adults: adaptations to strength training. J Appl Physiol 92: 2292-2302, 2002.
41. Schillings ML, Hoefsloot W, Stegeman DF, and Zwarts MJ. Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J Appl Physiol 90: 562-568, 2003.
42. Schindler-Ivens S and Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res 133: 233-241, 2000.
43. Schindler-Ivens SM and Shields RK. Soleus H-reflex recruitment is not altered in persons with chronic spinal cord injury. Arch Phys Med Rehabil 85: 840-847, 2004.
44. Shield A and Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34: 253-267, 2004.
45. Shields RK. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J Neurophysiol 73: 2195-2206, 1995.
46. Shields RK. Muscular, skeletal, and neural adaptations following spinal cord injury. The Journal of orthopaedic and sports physical therapy 32: 65-74, 2002.
47. Shields RK and Dudley-Javoroski S. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. Journal of neurophysiology 95: 2380-2390, 2006.
48. Taylor-Piliae RE and Froelicher ES. Effectiveness of Tai Chi exercise in improving aerobic capacity: a meta-analysis. J Cardiovasc Nurs 19: 48-57, 2004.
49. Thomas CK, Zaidner EY, Calancie B, Broton JG, and Bigland-Ritchie BR. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol 148: 414-423, 1997.
50. Trimble MH, Behrman AL, Flynn SM, Thigpen MT, and Thompson FJ. Acute effects of locomotor training on overground walking speed and H-reflex modulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 24: 74-80, 2001.
51. Trimble MH, Kukulka CG, and Behrman AL. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neurosci Lett 246: 186-188, 1998.
52. Umphred DA. Neurological rehabilitation. St. Louis Mosby, 2001.
53. Vollestad NK. Measurement of human muscle fatigue. J Neurosci Methods 74: 219-227, 1997.
54. William SP and Ernest WJ. Practical Electromyography. Baltimore: Williams & Wilkins, 1997.
55. Yang DS. Wheelchair Tai Chi Chuan. Taipei City: Yang, D.S., 1997.
56. Zehr PE. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86: 455-468, 2002.
57. Zory R, Boerio D, Jubeau M, and Maffiuletti NA. Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26: 847-853, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28493-
dc.description.abstract背景:太極拳是中國傳統武術的一種,近年來受到西方醫學的注意,傳統站姿太極拳已被證實對於老年人和神經性疾患有所助益。然而,對於失能無法久站的患者,他們無法從事站姿太極拳訓練。因此,1997年,資深的太極拳教練楊東興先生創始了輪椅太極拳(Wheelchair Tai Chi)或稱為坐姿太極拳 (seated Tai Chi),期望能使失能無法久站的患者也能接受輪椅太極拳的訓練。但是,輪椅太極拳的效果尚未被證明。
目的:本研究的目的是:(1)分析慢性頸髓不完全性損傷患者,接受八週輪椅太極拳訓練是否增進上肢神經生理之功能, 以及(2)量化輪椅太極拳的訓練強度。
方法:本研究徵召慢性頸髓不完全損傷(C2~C6,美國脊髓損傷學會分級ASIA C~D級)之受試者16位,分成輪椅太極拳訓練組與控制組。輪椅太極拳訓練組接受每次60分鐘,每週3次,共8週的訓練;控制組不接受任何訓練,並且維持原來的生活型態。輪椅太極拳訓練組與控制組均在訓練前、中、後進行神經生理的評估,包括測量橈側屈腕肌(Flexor carpi radialis)的運動神經元的興奮程度(如:最大H/M比值、H/M斜率比)、自主肌肉活化程度、最大自主收縮力量、與疲勞測試。並且,在訓練前,利用脊髓損傷獨立量表第二版(Spinal Cord Independence Measure, version II)評估受試者之功能獨立情況。另選擇一位輪椅太極拳教練及一位慢性頸髓不完全損傷患者評估輪椅太極拳訓練之心跳與攝氧量。
結果:輪椅太極拳訓練組8位(平均年齡42.6±9.4歲,平均身高164.4±5.2公分,平均體重65.1±11.2公斤)與控制組8位受試者(平均年齡38.5±13.2歲,平均身高166.1±9.9公分,平均體重61.5±12.7公斤)之年齡、身高、體重、脊髓受傷節數、受傷期間與脊髓損傷獨立量表無顯著差異。輪椅太極拳訓練組經過八週輪椅太極拳訓練之後,其最大自主收縮力量(由3.53±1.8公斤進步為5.09±2.6公斤,p=0.017)與自主肌肉活化程度(由47.35±17.35%進步為59.15±16.74%, p=0.012)有明顯進步,但是控制組之最大自主收縮力量與自主肌肉活化程度,在訓練前後是無顯著差異的。然而,輪椅太極拳訓練組與控制組之最大H/M比值與H/M斜率比,在訓練前、中、後,均未達顯著差異。而疲勞測試中,輪椅太極拳訓練組之疲勞指數與中樞疲勞指數在訓練八週後,有明顯改善,並且與控制組比較有顯著差異;而在控制組中,疲勞指數與中樞疲勞指數之下降程度在訓練前、中、後並無下降程度減緩之現象。而心肺反應分析顯示,輪椅太極拳的訓練強度為偏低,訓練心跳約70.5 下/分,強度約1.6 METs。
結論:八週之輪椅太極拳訓練可改善慢性脊髓不完全損傷患者之肌力與肌肉的耐力,其機轉可能與中樞神經興奮性的增加有關。但因脊髓神經元興奮性無明顯改變,因此可能主要受到大腦皮質重組而使下傳之皮質脊髓徑興奮性增加。建議需要進一步的研究證實大腦皮質的重組。
zh_TW
dc.description.abstractBackground: Tai Chi or Tai Chi Chuan (TCC) is a traditional Chinese martial art and TCC in standing posture proved its benefits for the elderly and the individuals with neurological diseases. However, the disabled and deconditioned people are unable to do the traditional exercise in stance. Therefore, in 1997 Dong-Sing Yang, an experienced coach of Tai Chi, developed Wheelchair Tai Chi (WCTC) which is the modified TCC in sitting posture for them, but the training effects of WCTC are still unknown.
Purpose: The purposes of this study were: (1) to investigate whether eight-week WCTC training would improve the neurophysiological function on upper extremity in subjects with chronic, incomplete cervical cord lesion, and (2) to quantify the intensity of WCTC during training.
Methods: Sixteen individuals with chronic, incomplete cervical cord lesion (C2~C6, ASIA C~D) were recruited and assigned to WCTC group and control group. The WCTC training was conducted about 60 min per session, 3 sessions per week for eight weeks. Control group did not receive any training and kept their original lives. The neurophysiological assessments were executed before, during, and after WCTC training, including the measurement of the alpha motoneuron (MN) excitability (i.e. max H/M ratio, Hslp/Mslp ratio), maximal voluntary contraction (MVC), muscle voluntary activation, and fatigue test of flexor carpi radialis (FCR) muscles. Moreover, the Spinal Cord Independence Measure (SCIM, version II) was used to evaluate the clinical functional status. Furthermore, one WCTC coach and one chronic, incomplete SCL were selected to measure the heart rate and oxygen consumption during WCTC exercise.
Results: Eight participants of WCTC group (mean age=42.6±9.4 yrs, mean height=164.4±5.2 cm, mean weight=65.1±11.2 kg) and 8 of control group (mean age=38.5±13.2 yrs, mean height=166.1±9.9 cm, mean weight=61.5±12.7 kg) were recruited. There were no significant differences in age, height, weight, injury level, injury duration and SCIM sores between two groups. After training, WCTC group increased significantly in MVC (from 3.53±1.8 kg to 5.09±2.6 kg,p=0.017), and muscle voluntary activation level (from 47.35±17.35% to 59.15±16.74%, p=0.012). In control group, no significant differences were found in MVC and muscle voluntary activation following eight weeks. However, there were no significant differences between WCTC and control groups in max H/M ratio and Hslp/Mslp ratio before and after training. Increased in fatigue index and central fatigue index were observed in WCTC group, whereas in control group. In terms of cardiopulmonary function, the results indicated that the training intensity was low with heart rate being about 70.5 bpm, and the METs being about 1.6.
Conclusions: The eight-week WCTC training could improve muscle strength, muscle voluntary activation, and endurance in chronic, incomplete cervical cord lesion. The possible mechanism might be related to the enhancement of central neural drive in descending corticospinal tract. Since the MN excitability at spinal level did not change significantly, the change might be mainly due to cortical reorganization. Further study is suggested to investigate if cortical reorganization happens after training.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:09:54Z (GMT). No. of bitstreams: 1
ntu-96-R94428009-1.pdf: 2204030 bytes, checksum: df01eeef1410d0c09f9ee14bbe111e2a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
Chapter 1 Introduction 1
1.1 Background 1
1.2 Aims 2
1.3 Questions and Hypotheses 3
1.4 Operational Definition 5
1.4.1 H-reflex 5
1.4.2 M Wave 6
1.4.3 The Ratio of the Maximal H-reflex to the Maximal M Wave (max H/M Ratio) 6
1.4.4 Typical Recruitment Curve of H-reflex and M Wave 6
1.4.5 The Ratio of the Developmental Slope of the H-reflex to the slope of the M Wave (Hslp/Mslp) 7
1.4.6 Maximal Voluntary Contraction (MVC) 8
1.4.7 Muscle Voluntary Activation 8
1.4.8 Fatigue Index (FI) 8
1.4.9 Spinal Cord Independence Measure (SCIM version II) 9
Chapter 2 Literature Review 10
2.1 Tai Chi Chuan (TCC) 10
2.1.1 Metabolic and Cardiovascular Response During TCC 11
2.1.2 Wheelchair Tai Chi (WCTC) 12
2.2 Neuromuscular Adaptation Following Spinal Cord Lesion 13
2.2.1 Neural adaptation 14
2.2.1.1 The Changes of H-reflex Excitability 14
2.2.1.2 Cortical Reorganization 15
2.2.2 Muscular adaptation 16
2.3 Neuromuscular Fatigue 16
2.3.1 Central and Peripheral Fatigue 17
2.3.2 Fatigue Assessment 17
2.3.3 Twitch Interpolation Technique and Muscle Voluntary Activation 19
2.4 Functional Outcome Assessment for Spinal Cord Lesion 20
Chapter 3 Materials and Methods 21
Part I 21
3.1 Participants 21
3.2 Study Design 22
3.3 Experimental Procedure 22
3.4 Experimental Protocol 23
3.5 Training Programs 25
3.5.1 WCTC Group 26
3.5.2 Control Group 26
3.6 Experimental Equipment 26
3.7 Data Analysis 28
3.7.1 Independent Variable 28
3.7.2 Dependent Variables 29
3.7.2.1 Maximal Voluntary Contraction (MVC) 29
3.7.2.2 H-reflex, M wave, and Max H/M Ratio 29
3.7.2.3 Slope of the H-reflex, and M Wave, and Hslp/Mslp 30
3.7.2.4 Muscle Voluntary Activation 30
3.7.2.5 Fatigue Index (FI) 31
3.7.2.6 Central Fatigue Index (CFI) 31
3.8 Statistical Analysis 32
Part II 33
3.9 Participants 33
3.10 Experimental Equipment 33
3.11 Experimental Protocol 34
3.12 Data Analysis 34
3.13 Statistical Analysis 34
Chapter 4 Results 35
Part I 35
4.1 Basic Data of All Participants 35
4.2 Maximal Voluntary Contraction (MVC) 35
4.3 Max H/M Ratio and Hslp/Mslp Ratio 36
4.4 Muscle Voluntary Activation Before Fatigue Test 36
4.5 Fatigue Index (FI) 37
4.6 Central Fatigue Index (CFI) 38
Part II 40
4.7 Cardiorespiratory Responses During WCTC 40
Chapter 5 Discussion 41
5.1 Major Findings 41
5.2 Maximal Voluntary Contraction (MVC) 41
5.3 Muscle Voluntary Activation 42
5.4 Max H/M Ratio and Hslp/Mslp ratio 43
5.5 FI and CFI 44
5.6 Possible mechanisms 45
5.7 Cardioresponses During WCTC 46
5.8 Limitations of the Study 46
5.9 Future Studies 48
5.10 Conclusions 49
References 50
Tables 58
Table 1 Basic data of participants. 58
Table 2 The summary table for amplitude of the maximal H-reflex and M wave, max H/M ratio, Hslp, Mslp, and Hslp/Mslp ratio. 59
Table 3 The summary table for Fatigue Indices (FIs) during practicing fatigue protocol is presented. 60
Table 4 The summary table for central fatigue index (CFI) during practicing fatigue protocol is presented. 61
Table 5 Cardiorespiratory responses during WCTC. 62
Figures 63
Figure 1 (A) The pathway of the H-reflex and M wave. (B) The profiles of the H-reflex and M wave 63
Figure 2 The profiles of H-reflex and M wave. 64
Figure 3 The typical recruitment curve of H-reflex and M wave. 65
Figure 4 The developmental slopes of H-reflex and M wave. 66
Figure 5 The ITT of FCR muscle for estimating muscle activation. 67
Figure 6 The flow chart of this study. 68
Figure 7 Participant practiced fatigue protocol with visual feedback and auditory signals. 69
Figure 8 The standard locations of EMG electrodes and stimulator points. 70
Figure 9 Fatigue protocol was used in this study. 71
Figure 10 Participants and coach practiced Shu-Jin-Jian-Shen method (舒筋健身法) for stretching. 72
Figure 11 Participants and coach practiced WCTC. 73
Figure 12 The position of equipment. 74
Figure 13 The connection of all equipment. 75
Figure 14 The interface of LabVIEW for analyzing muscle voluntary activation. 76
Figure 15 The typical pattern of declined force output before and during fatigue test. 77
Figure 16 The typical pattern of muscle voluntary activation before and during fatigue test. 78
Figure 17 Maximal voluntary contraction force (MVC) at baseline (B), week 4 (WK4), and week 8 (WK8) in wheelchair tai chi (WCTC) group and control group is presented. 79
Figure 18 Muscle voluntary activation at baseline (B), week 4 (WK4) and, week 8 (WK8) in wheelchair tai chi (WCTC) group and control group is presented. 80
Figure 19 Fatigue index (FI) of WCTC group (A) and control group (B) at baseline, WK4 and WK8. 81
Figure 20 Fatigue index (FI) in baseline (A), WK4 (B), and WK8 (C) 82
Figure 21 Central fatigue index of WCTC group (A) and control group (B) at baseline, WK4 and WK8. 83
Figure 22 Central fatigue index in baseline (A), WK4 (B), and WK8 (C) 84
Appendix 85
dc.language.isoen
dc.title頸髓損傷患者輪椅太極拳訓練之神經生理效應zh_TW
dc.titleThe Neurophysiological Effects of Wheelchair Tai Chi Training in Individuals With Cervical Cord Lesionen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王淳厚(Chun-Hou Wang),張雅如(Ya-Ju Chang),陸哲駒(Jer-Junn Luh)
dc.subject.keyword太極拳,電刺激,H反射,肌肉疲勞,橈側屈腕肌,zh_TW
dc.subject.keywordTai Chi Chuan,Electric Stimulation,H-reflex,Muscle Fatigue,Flexor Carpi Radialis,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved