Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28484
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳志宏(Jhy-Horng Chen) | |
dc.contributor.author | Chia-Fone Lee | en |
dc.contributor.author | 李家鳳 | zh_TW |
dc.date.accessioned | 2021-06-13T00:09:37Z | - |
dc.date.available | 2009-07-31 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-27 | |
dc.identifier.citation | References
Altenau MM, Sheehy JL. Tympanoplasty. Cartilage prosthesis- a report of 564 cases. Laryngoscope 1978;88:895-904. Anthony JM. Implantable hearing devices. Otolaryngol Clin North Am 1989;22(1):175-200. Arimoto H. Ossicular vibration in human temporal bones. J Otol Rhinol Laryngol Soc Japan 1989; 92:1359-1370. Baran NM. Finite element analysis on microcomputers: McGraw-Hill; 1988 Gan RZ, Sun Q, Robert KDJr, Chang KH, Dormer KJ. Three-dimensional modeling of middle ear biomechanics and its applications. Otol and Neurotol 2002; 23:271-280 Beer H J, Bornitz M, Harstke HJ, Schmidt R, Hofmann G, Vogel U. Modeling of components of the human middle ear and simulation of their dynamic behavior. Audiol Neuro-Otol 1999; 4:156-162. Bornitz M, Zahnert T, Hardtke HJ, Hüttenbrink KB. Identification of parameters for the middle ear. Audiol Neurootol 1999;4:163-169 Buckingham RA. Fascia and perichondrium atrophy in tympanoplasty and recurrent middle ear atelectasis. Ann Otol Rhinol Laryngol 1992;101:755-758. Cohen AM, Schwaber MK, Anthony LS, et al. Eustachian tube function and tympanoplasty. Ann Otol Rhinol Laryngol 1979;88:339-347. Cho JR, Lee HW, Kim KW. Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation. J Sound Vibration 2002;64(1):133-157 Decraemer WF, Dirckx JJJ, Funnell WRJ. Three-dimensional modeling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner. JARO 2003;4:250-263 Dornhoffer JL. Surgical management of the atelectatic ear. Am J Oto 2000;21:315-321 Eiber A, Kauf A. Berechnete Verschiebung der Mittelohrknochen unter statischer Belastung HNO 1994;42:754-759 Ferris P, Prendergast PJ. Middle-ear dynamics before and after ossicular replacement. J Biomech 2000: 33:581-590 Funnell WRJ, Khanna SM, Decramemer WF. On the degree of rigidity of the manubrium in a finite element model of the cat ear drum. J Acoust Soc Am 1992; 91(4):2082-2090. Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 2004;32(6):847-859. Gan RZ, Sun Q, Feng B, Wood MW. Acoustic-structural coupled finite analysis for sound transmission in human ear-Pressure distribution. Medical Engineering & Physics 2005;22:301-311. Goode RL, Killion M, Nakamura K, Nishihara S: New knowledge about the function of the human middle ear: Development of an improved analog model. Am J Otol 1994;15:145-154. Geisler CD: From sound to synapse: Physiology of mammalian ear. Oxford University Press, 1998 Heermann HJ, Heermann H, Kopstein E: Fascia and cartilage palisade tympanoplasty: nine years experience. Arch Otolaryngol 1970;91: 229-240 Hermann G., Liebowitz H. Mechanics of bone fracture. In: Liebowitz H, eds. Fracture: An Advance Treatise. New York: Academic Press. 1972; 7:772-840. Hildman H, Luckhaupt H, Schmelzer A: Die Verwendung von Knorpel in der Mittelohrchirurgie. HNO 1996; 44: 597-603. Hüttenbrink KB. Current status and critical reflections on implantable hearing aids. Otol and Neurotol 1999;20:409-415. Huber A, Ball G, Asai M, Goode R. The vibration pattern of the tympanic membrane after placement of a total ossicular replacement prosthesis. In: Proceeding of the International Workshop on middle ear mechanics in research and otosurgery. Dresden, Germany; 1997: 219-222. Hudde H, Weistenhöfer C: A three-dimensional circuit model of the middle ear. Acustica 1997;83:535-549. Jansen C. Cartilage-tympanoplasty. Laryngoscope 1963;73:1288-1302. Kelly DJ, Prendergast PJ, Blayney AW. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses. J Biomech 2003; 24:11-19 Kerr AG, Byrne JE, Smyth GD. Cartilage homografts in the middle ear: a long-term histologic study. J Laryngol otol 1973; 87: 1193-1199. Kim HH, Barrs DM. Hearing aids: A review of what’s new. Otolaryngol Head Neck Surg 2006;134:1043-1050 Kinsler LE, Frey AR, Coppens AB, Sanders JV: Fundamentals of acoustics. 4th ed. New York: John Wiley & Sons; 2002 Kirikae I: The Structure and Function of Middle Ear. Tokyo University Press, Tokyo; 1960 Koike I. The structure and Function of the Middle ear. Tokyo: University of Tokyo Press; 1960 Lee CF, Chen PR, Lee WJ, et al. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Laryngoscope 2006;116:711-716. Lee CF, Hsu LP, Chen PR, et al. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis. Audiol Neurotol 2006;11:380-388. Lee CF, Chen JH, Chou YF, Hsu LP, Chen PR, Liu TC: Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty: a finite element analysis. Laryngoscope 2007;117:725-730 Mcelveen JT, Goode RL, Miller C, Falk SA: Effect of mastoid cavity modification on middle ear sound transmission. Ann Otol Rhinol Laryngol 1982;91:526-532 Molvær OI, Vallersnes FM, Kringlebotn M: The size of the middle ear and mastoid air cell. Acta Otolaryngol 1978;85:24-32. Moore GY: Revision tympanoplasty utilizing fossa triangularis cartilage. Laryngoscope 2002;112:1543-1554. Mürbe D, Zahnert T, bornitz M, et al. Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane. Laryngoscope 2002;112:1769-1776. National Institute on Deafness and Other Communication Disorders. http//www.nidcd.nih.gov/health/statistics/hearing.asp. Nishihara S, Aritomo H, Goode RL. Effect of changes in mass on middle ear function. Otolaryngology- Head Neck Surgery 1993; 109:899-910 Nishihara S, Goode RL. Measurement of tympanic membrane vibration in 99 human ears. In: Hüttenbrink KB, eds. Middle ear mechanics in research and otosurgery. Dresden University of Technology, Dresden, Germany; 1996: 91-93 Nissen AJ, Nessen RL, Younkers AJ. A historical review of the use of bone and cartilage in otologic surgery. Ear Nose Throat J 1986;65:493-496. Overbosch HC: Homograft myringoplasty with microsliced septal cartilage. Proc Otorhinolaryngol 1971;33:356-357 Park S, Lee KC, Cho JH, Lee SH. Electromagnetic vibration transducer using polyimide elastic body for implantable middle ear hearing aid. Sensors and Actuators A 2002;97-98:201-207. Peake WT, Rosowski JJ, Lynch TJ: Middle-ear transmission: acoustic versus ossicular coupling in cat and human. Hear Res 1992;57:245-268 Perkins R. Earlens tympanic contact transducer: A new method of sound transduction to the human ear. Otolaryngol Head Neck Surg 1996;114:720-728 Pierce AD: Acoustic-an introduction to its physical principles and applications. New York: McGraw-Hill; 1981. Preobrazhenski TB, Rugov AA. The employment of preserved dura graft in tympanoplasty. Vestn Otorhinolaringol 1965;5:38-42. Shaw ENG: The external ear. In: Keidel WD, Nef WD, editors. Handbook of sensory physiology, vol 1. Berlin Germany: Springer-Verlag; 1974 Shea JJ. Vein graft closure of eardrum perforation. Arch Otolaryngol 1960;72:445-447. Sheehy JL, Glasscock ME. Tympanic membrane grafting with temporalis fascia. Arch Otolaryngol 1967;86:391-402. Storrs LA. Myringoplasty with the use of fascia grafts. Arch Otolaryngol 1961;74:45-49. Sun Q, Chang KH, Dormer KJ, Robert KDJr, Gan RZ. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med Engineering Physics 2002; 24: 595-606 Sun Q, Gan RZ, Chang KH, Dormer KJ. Computer-integrated finite element modeling of human middle ear. Biomechan Model Mechanobiol 2002; 1:109-122. Voss SE, Rosowski JJ, merchant SN, Peak WT. How do tympanic membrane perforations affect human middle ear sound transmission? Acta Otolaryngol 2001;121:169-173. Wada H, Metoki T, and Kobayashi T. Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 1992; 92:3157-3168. Wada H, Yokobori AT, Kakizaki T, Kobayashi T: Mechanical properties of ossicles and prosthesis. Oto Jpn 1996;6:42-46 Wever EG, Lawrence M. In Physiological acoustics. Princeton (NJ): Princeton University Press; 1954:416-417 Williams KR, Blayney AW, Rice HJ: Middle ear mechanics as examined by the finite element method; in Hüttenbrink KB (ed): Middle Ear Mechanics in Research and Otosurgery. Proceedings of the International Workshop on Middle Ear Mechanics, Dresden, 19-22 Sept 1996. Dresden, University of Technology, 1997, pp40-47. Woo SLY, Akeson WH, Jemmot GF: Measurement of nonhomogenous, directional mechanical properties of articular cartilage in tension. J Biomechanics 1976;9: 785-791 Zahnert T, Hüttenrink KB, Mürbe D, & Bornitz, M. Experimental investigation of the use of cartilage in tympanic membrane reconstruction. Am J Otol, 2000; 21: 322-328. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28484 | - |
dc.description.abstract | 在這個研究裡,包含了以有限元素分析法為基礎,探討如何從高解析度電腦斷層來建立人類中耳模型,並以此模型整合結構音場的耦合來探討乳突竇對聲音傳遞的影響,此外,在臨床上的應用上;例如:建立了軟骨及耳膜耦合模型並決定出軟骨耳膜修補手術的最佳化厚度,及應用在研發新一代助聽器。
首先,吾人採用高解析度電腦斷層擷取受測者顳骨的影像,並利用影像重建的方法,建立三維體積模型,並分析耳膜的厚度、聽小骨的長度,最後在利用電腦輔助分析建立CAD (Computer-aided design) 模型,再利用有限元素分析,解算出malleus及stapes的振動大小,並且和國外學者Nishihara, Huber, Gan, and Sun等人的資料做比較,除了在耳膜厚度的量測上,因為受限於高解析度電腦斷層的解析度,但是這個缺點可以在做有限元素分析時做相互校正給調整出來,其它所有結果是互相一致的,吾人所提出的方法和組織切片方法比較起來擁有快速、低成本、非侵襲性等優點。 第二個研究則進行了利用高解析度電腦斷層擷取受測者顳骨的影像,並利用影像重建的方法,建立三維體積模型,包括了外耳道、耳膜、3個小聽骨、中耳腔及乳突腔的有限元素模型建立,不僅可以用來解釋乳突腔對於聲音傳導的影響,藉由因場結構耦合分析,可以瞭解因為乳突腔的連結,對於聲音的壓力在中耳傳遞的影響。 第三個研究包含了tragus 軟骨的參數度量及其研究,吾人決定出了tragus軟骨的密度及其β-damping值的大小,且其值和頻率的大小有關,在低頻時β-damping接近3 10-4 s然而在高頻時β-damping接近5 10-6 s,並且建立了軟骨及耳膜耦合模型,這個軟骨及耳膜耦合模型可以用來決定手術時採用軟骨耳膜修補手術的最佳化研究 第四個研究包含了在不同耳膜破洞大小時,採用軟骨耳膜修補手術時最佳厚度之決定,依據吾人的第二個研究及創立的軟骨及耳膜耦合模型,建立了三種不同耳膜破洞大小的CAD模型(15%, 55% 及85%),同樣符合破洞大小的軟骨板在連結至這個模型,藉由有限元素分析的過程,最佳化厚度可以被求出,結果顯示:在小破洞(大約15%)使用厚度1mm可以得到良好的結果,然而在在中等大小破洞(大約55%)使用厚度0.2mm可以才得到良好的結果,如果是更大的破洞(大約85%)就必須使用厚度0.1~0.2mm可以才得到良好的結果,總而言之,採用軟骨耳膜修補手術,需依據不同的破洞大小來決定其使用的厚度。 最後的研究是研發新一代的耳膜上助聽器,目的上想解決傳統式助聽器的一些缺點:回饋現象(feedback)、遮蔽效應(occlusion effect)、在Earlens助聽器上增益不穩定•••等現象,並使用發光二極體及相對應的光二極體作為訊號的接收,最佳化設計包含了:磁鐵的大小、線圈的位置及形狀、光電流的大小。這個致動器(actuator)是預計放在耳膜之上,利用發光二極體產生的光作為致動器(actuator)的能量來源,因為光的能量是正的無法區分出正的訊號及負的訊號,所以我們採用半波整流(half wave rectifier)把訊號分成正、負兩週期訊號,讓正訊號藉由藍光發光二極體並藉由相對應的藍色二極體接受;同樣地,讓負訊號藉由綠光發光二極體並藉由相對應的綠色二極體接受,因為線圈是兩個方向性纏繞,如此一來將產生推拉的力量而使致動器作用,所模擬電磁力的最佳化也可作為新一代助聽器的先驅。 | zh_TW |
dc.description.abstract | In this research, we first demonstrate how to use high-resolution computed tomography to create human middle ear as a systematic and practical approach. Finite element and multi-body dynamic analysis of this model can be used. The three-dimensional model created by finite element method and predicted umbo and stapes displacement are close to the bounds of the experimental curve of Nishihara’s, Huber’s, Gan’s, and Sun’s data across the frequency range of 100 to 8000 Hz.
The second work was to created a three-dimensional finite element (FE) model of the human ear with the external ear canal, tympanic membrane, ossicles, suspensory ligaments/muscles, tympanic cavity and mastoid cavity from high-resolution computed tomography images (HRCT). Acoustic-structural coupled FE analysis was performed to study the sound transmission of the human middle ear. The effect of the mastoid cavity on sound transmission was also highlighted. Pressure distributions in the external ear canal and middle ear cavity at different frequencies were demonstrated. The FE model of the human ear was validated by comparing model-predicted ossicular movements at the umbo with published experimental measurements on the human temporal bone. Our results showed that, first, blocking the aditus improves middle ear sound transmission in the 1500- to 2500-Hz range and decreases displacement in frequencies below 1000 Hz when compared with the normal ear. Second, acoustic pressure distributions in the external ear canal and middle ear cavity depend on frequency. At frequencies lower than 1000 Hz, the acoustic pressures were almost uniformly distributed in the external ear canal and middle ear cavity. At high frequencies, higher than 1000 Hz, the pressure distribution varied along the external ear canal and middle ear cavity. Third, after coupling with the mastoid cavity, the pressure differences in the middle ear cavity were larger than those of the closed mastoid cavity. Finally, there was no significant difference in the acoustic pressure measured at different locations in the middle ear cavity at low frequency. As the frequency increases, the pressure difference between the oval window and round window is noted and increased by 5 dB by blocking the aditus. In clinic, this model can be used to develop a cartilage/tympanic membrane-coupled model for cartilage myringoplasty. Optimal thickness of different sizes of cartilage plate was obtained using finite element analysis. Parameters of cartilage were determined by curve fitting and cross-calibration. Our results show the β-damping value of cartilage plate depends on frequency. The value of β damping was close to 3 10-4 s at lower frequencies and 5 10-6 s at higher frequencies. Three different sizes of TM perforation (15%, 55% and 85%, representing small, medium and large perforations respectively) were created in the pars tensa. A cartilage plate was used to repair the eardrum perforation, and the new tympanic membrane-cartilage coupled complex was loaded into our 3-dimensional biomechanical model for analysis. Our results show that firstly, in cases with 85% perforation, the frequency-amplitude responses that were most similar to natural TM at lower frequencies were for graft thicknesses of 0.2 mm, and for 0.1 mm at higher frequencies. Secondly, in cases with 55% posterior perforation of the TM, assessment of the predicted vibration amplitude of different thicknesses of the cartilage plate showed that a cartilage plate of < 0.2 mm had a frequency response function similar to that of a natural TM in umbo and stapes footplate displacement. Finally, for a central perforation involving 15% of the tympanic membrane, a cartilage plate of < 1.0 mm showed a frequency response function similar to that of TM in umbo and stapes-footplate displacement. Based on our biomechanical analysis, the optimal thickness of a cartilage graft for myringoplasty seems to be 0.1 to 0.2 mm for medium and large TM perforations. For small perforations, a cartilage < 1.0 mm is a good compromise between mechanical stability and low acoustic transfer loss. We also design a new method of transducing sound to the human middle ear. The new hearing aid uses light from light emitting diode as the transferring media of input signals. Then the receiving photodiode generate currents and signals to supply the power of actuator. The new type of vibration actuator is composed of wound coil, a permanent magnet, aluminium ring, latex membrane and two photodiodes. The actuator is placed on the tympanic membrane and maintains its position by mineral oil. Finite element analysis is performed to optimize the electromagnetic force. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:09:37Z (GMT). No. of bitstreams: 1 ntu-96-D93548011-1.pdf: 5642909 bytes, checksum: 38d19b27f58603134c5de3d9c55497d9 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Abstract Ш
Contents Ⅶ List of figures Ⅺ List of tables Ⅻf Chapter 1 Introduction 1.1 Background on Hearing……………………………………...…….......….1 1.2 Finite-Element Method………………………….………………………...2 1.3 Hearing aid………………………………………….…...............................3 1.4 Motivation………………………………………………………...………..5 1.4.1 Three-Dimensional Reconstruction and Modeling of Middle Ear Biomechanics by High-Resolution Computed Tomography and Finite Element Analysis………………………………………….....5 1.4.2 Acoustic-Structural Coupled Finite Element Analysis of Human Middle ear: the Effect of Mastoid Cavity on Sound Transmission…………………………………………………...……7 1.4.3 Biomechanical Modeling and Design Optimization of Cartilage Myringoplasty Using Finite Element Analysis............................…..7 1.4.4 The Optimal Graft Thickness for Different Sizes of Tympanic Membrane Perforation in Cartilage Myringoplasty: a Finite Element Analysis……………………………………..……………...……….9 1.4.5 The Optimal Electromagnetic Force of a Novel Opto-Electromagnetic Actuator Attached on Tympanic Membrane Using Finite Element Analysis………………………………….....10 1.5 Thesis Organization……………..………….……………..…………….10 Part I. Three-Dimensional Reconstruction and Modeling of Middle Ear Biomechanics Chapter 2 Three-Dimensional Reconstruction and Biomechanical Modeling of Human Middle Ear Using High-Resolution Computed Tomography and Finite Element Analysis………….....13 2.1 Introduction……………………………………………………...………13 2.2 Materials and Methods.............................................................................13 2.2.1 High-Resolution Computed Tomography of Temporal Bone……..13 2.2.2 Finite Element Analysis of Middle Ear…………………….…...…15 2.3 Results…………………………………………………………...………..17 2.4 Discussion……………………..…………..……………………..………21 Chapter 3 Acoustic-Structural Coupled Finite Element Analysis of Human Middle Ear: The Effect of Mastoid Cavity on Sound Transmission..................................................................................................24 3.1 Indroduction……………...………………………………………………24 3.2 Materials and methods..............................................................................24 3.2.1 High-Resolution Computed Tomography of Temporal Bone..……24 3.2.2 A 3-Dimensional Finite Element Model of the Middle Ear.............27 3.2.3 Finite Element Analysis……………………………………….…..29 3.2.4 Validation of the Finite Element Model…………………………...30 3.3 Results……………………………………………………………...…….30 3.4 Discussion…………………………………………………………..……39 Part II. Clinical Applications Chapter 4 Biomechanical Modeling and Design Optimization of Cartilage Myringoplasty Using Finite Element Analysis................44 4.1 Introduction………………………………………………………...……44 4.2 Materials and Methods............................................................................44 4.2.1 Three-Dimensional Finite Element Model of Middle Ear………...44 4.2.2 Determination Parameters of Cartilage………….…….…….….…46 4.2.3 Cartilage Myringoplasty by Cartilage Plate–Tympanic Membrane-Coupled Model Using Finite Element Analysis……....47 4.3 Results………………………………………………………...…..……...50 4.4 Discussion……………………………………………………………..…54 Chapter 5 The Optimal Graft Thickness for Different Sizes of Tympanic Membrane Perforation in Cartilage Myringoplasty: a Finite Element Analysis………..................................................................56 5.1 Introduction……………………………………………………………...56 5.2 Materials and Methods………………………..……………….……..…56 5.3 Results………………………………………………………………..…..59 5.4 Discussion……………………………………………………………..…60 Chapter 6 The Optimal Electromagnetic Force of A Novel Opto-Electromagnetic Actuator Attached on Tympanic Membrane Using Finite Element Analysis………………..………….69 6.1 Introduction………………...……………………………………………69 6.2 Material and methods…………….…………………………………...…69 6.2.1 Design of the New Actuator………………………..…...…………..69 6.2.2 Signal Processing……………………………….………………..….71 6.2.3 Hearing Loss and Force Compensation…………………………..…71 6.3 Results……………………………………………………………..….….74 6.4 Discussion………………………………………………….…………..…77 Chapter 7 Discussions and Conclusion………………………………….78 References……………………………………………………………..…....……..80 Appendix……………………………………………………….………………….93 1. 論文著作表.....................................................................................................93 1.1 期刊論文……………………………………………………………….93 1.2 Biomedical Engineering – Applications, Basis, and Communcations…………………………………………………….....93 1.3 國際研討會論文……………………………………………………….94 1.4 其他著作.................................................................................................94 2. 獲選為雜誌封面(Audiology & Neurotology)…………………………...95 3. 獲選為5篇頂尖研究(Audiology & Neurotology)……………………...96 | |
dc.language.iso | en | |
dc.title | 三維空間重建暨模擬中耳聽小骨的生物機械模型
及其臨床應用 | zh_TW |
dc.title | Three-Dimensional Reconstruction and Modeling of Middle Ear Biomechanics with its Clinical Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 周元昉(Yuan-Fang Chou),劉殿楨(Tien-Chen Liu) | |
dc.contributor.oralexamcommittee | 陳培榕(Peir-Rong Chen),林凱南(Kai-Nan Lin),徐爵民,熊慎幹 | |
dc.subject.keyword | 高解析度電腦斷層掃瞄,中耳生物機械模型,有限元素分析,軟骨耳膜修補手術,助聽器,致動器, | zh_TW |
dc.subject.keyword | high-resolution computed tomography,finite element analysis,middle ear biomechanics,mastoid cavity,cartilage myringoplasty,hearing aid,actuator, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
Appears in Collections: | 醫學工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 5.51 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.