Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同
dc.contributor.authorHsin-Yu Linen
dc.contributor.author林欣瑜zh_TW
dc.date.accessioned2021-06-13T00:09:00Z-
dc.date.available2021-02-01
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-05
dc.identifier.citationAhmed, U., Redgrave, T.G., and Oates, P.S. (2009). Effect of dietary fat to produce non-alcoholic fatty liver in the rat. J Gastroenterol Hepatol 24, 1463-1471.
Arai, T., Kim, H.J., Chiba, H., and Matsumoto, A. (2009). Anti-obesity effect of fish oil and fish oil-fenofibrate combination in female KK mice. J Atheroscler Thromb 16, 674-683.
Ariel, A., Li, P.L., Wang, W., Tang, W.X., Fredman, G., Hong, S., Gotlinger, K.H., and Serhan, C.N. (2005). The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J Biol Chem 280, 43079-43086.
Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J.A., and Reddy, S.T. (2003). Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci U S A 100, 1751-1756.
Baumgardner, J.N., Shankar, K., Hennings, L., Badger, T.M., and Ronis, M.J. (2008). A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am J Physiol Gastrointest Liver Physiol 294, G27-38.
Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147-152.
Capanni, M., Calella, F., Biagini, M.R., Genise, S., Raimondi, L., Bedogni, G., Svegliati-Baroni, G., Sofi, F., Milani, S., Abbate, R., et al. (2006). Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study. Aliment Pharmacol Ther 23, 1143-1151.
Carmiel-Haggai, M., Cederbaum, A.I., and Nieto, N. (2005). A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 19, 136-138.
Civitelli, R., Villareal, D.T., Agnusdei, D., Nardi, P., Avioli, L.V., and Gennari, C. (1992). Dietary L-lysine and calcium metabolism in humans. Nutrition 8, 400-405.
Cui, W., Chen, S.L., and Hu, K.Q. (2010). Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res 2, 95-104.
Deng, Q.G., She, H., Cheng, J.H., French, S.W., Koop, D.R., Xiong, S., and Tsukamoto, H. (2005). Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42, 905-914.
Flodin, N.W. (1997). The metabolic roles, pharmacology, and toxicology of lysine. J Am Coll Nutr 16, 7-21.
Gonzalez-Periz, A., Planaguma, A., Gronert, K., Miquel, R., Lopez-Parra, M., Titos, E., Horrillo, R., Ferre, N., Deulofeu, R., Arroyo, V., et al. (2006). Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J 20, 2537-2539.
Griffith, R.S., Walsh, D.E., Myrmel, K.H., Thompson, R.W., and Behforooz, A. (1987). Success of L-lysine therapy in frequently recurrent herpes simplex infection. Treatment and prophylaxis. Dermatologica 175, 183-190.
Hamaguchi, M., Kojima, T., Takeda, N., Nakagawa, T., Taniguchi, H., Fujii, K., Omatsu, T., Nakajima, T., Sarui, H., Shimazaki, M., et al. (2005). The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143, 722-728.
Harper, A.E., Winje, M.E., Benton, D.A., and Elvehjem, C.A. (1955). Effect of amino acid supplements on growth and fat deposition in the livers of rats fed polished rice. J Nutr 56, 187-198.
Hsu, J.M., Wang, P.H., Liu, B.H., and Ding, S.T. (2004). The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J Anim Sci 82, 683-689.
Kakkos, S.K., Yarmenitis, S.D., Tsamandas, A.C., Gogos, C.A., and Kalfarentzos, F. (2000). Fatty liver in obesity: relation to Doppler perfusion index measurement of the liver. Scand J Gastroenterol 35, 976-980.
Kim, H.J., Takahashi, M., and Ezaki, O. (1999). Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274, 25892-25898.
Letteron, P., Sutton, A., Mansouri, A., Fromenty, B., and Pessayre, D. (2003). Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology 38, 133-140.
Lieber, C.S., Leo, M.A., Mak, K.M., Xu, Y., Cao, Q., Ren, C., Ponomarenko, A., and DeCarli, L.M. (2004). Model of nonalcoholic steatohepatitis. Am J Clin Nutr 79, 502-509.
Lotersztajn, S., Julien, B., Teixeira-Clerc, F., Grenard, P., and Mallat, A. (2005). Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 45, 605-628.
Ludwig, J., Viggiano, T.R., McGill, D.B., and Oh, B.J. (1980). Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55, 434-438.
Nakatani, T., Kim, H.J., Kaburagi, Y., Yasuda, K., and Ezaki, O. (2003). A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44, 369-379.
Oh, D.Y., Talukdar, S., Bae, E.J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W.J., Watkins, S.M., and Olefsky, J.M. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698.
Okamoto, Y., Tanaka, S., and Haga, Y. (2002). Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol Res 23, 138-144.
Reddy, J.K., and Rao, M.S. (2006). Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290, G852-858.
Rome, S., Lecomte, V., Meugnier, E., Rieusset, J., Debard, C., Euthine, V., Vidal, H., and Lefai, E. (2008). Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34, 327-337.
Sachan, D.S., Rhew, T.H., and Ruark, R.A. (1984). Ameliorating effects of carnitine and its precursors on alcohol-induced fatty liver. Am J Clin Nutr 39, 738-744.
Schenk, S., Saberi, M., and Olefsky, J.M. (2008). Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118, 2992-3002.
Schmittgen, T.D., Zakrajsek, B.A., Mills, A.G., Gorn, V., Singer, M.J., and Reed, M.W. (2000). Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285, 194-204.
Sekiya, M., Yahagi, N., Matsuzaka, T., Najima, Y., Nakakuki, M., Nagai, R., Ishibashi, S., Osuga, J., Yamada, N., and Shimano, H. (2003). Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 38, 1529-1539.
Serhan, C.N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S.P., and Petasis, N.A. (2006). Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176, 1848-1859.
Stillwell, W. (2008). Docosahexaenoic acid: a most unusual fatty acid. Chem Phys Lipids 153, 1-2.
Sun, C., Wei, Z.W., and Li, Y. (2011). DHA regulates lipogenesis and lipolysis genes in mice adipose and liver. Mol Biol Rep 38, 731-737.
Tai, C.C., Chen, C.Y., Lee, H.S., Wang, Y.C., Li, T.K., Mersamm, H.J., Ding, S.T., and Wang, P.H. (2009). Docosahexaenoic acid enhances hepatic serum amyloid A expression via protein kinase A-dependent mechanism. J Biol Chem 284, 32239-32247.
Takayama, F., Nakamoto, K., Totani, N., Yamanushi, T., Kabuto, H., Kaneyuki, T., and Mankura, M. (2010). Effects of docosahexaenoic acid in an experimental rat model of nonalcoholic steatohepatitis. J Oleo Sci 59, 407-414.
Tanphaichitr, V., and Broquist, H.P. (1973). Role of lysine and -N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J Biol Chem 248, 2176-2181.
Tanphaichitr, V., Zaklama, M.S., and Broquist, H.P. (1976). Dietary lysine and carnitine: relation to growth and fatty livers in rats. J Nutr 106, 111-117.
Vennart, G.P., Perna, V.P., and Stewart, W.B. (1958). Fatty liver of portal type: cured by lysine plus tryptophan. J Nutr 64, 635-638.
Viviani, R., Sechi, A.M., and Lenaz, G. (1964). Fatty Acid Composition of Portal Fatty Liver in Lysine- and Threonine-Deficient Rats. J Lipid Res 15, 52-56.
Wang, B., Ishihara, M., Egashira, Y., Ohta, T., and Sanada, H. (1999). Effects of various kinds of dietary amino acids on the hepatotoxic action of D-galactosamine in rats. Biosci Biotechnol Biochem 63, 319-322.
Wang, Y.C., Kuo, W.H., Chen, C.Y., Lin, H.Y., Wu, H.T., Liu, B.H., Chen, C.H., Mersmann, H.J., Chang, K.J., and Ding, S.T. (2010). Docosahexaenoic acid regulates serum amyloid A protein to promote lipolysis through down regulation of perilipin. J Nutr Biochem 21, 317-324.
Weltman, M.D., Farrell, G.C., and Liddle, C. (1996). Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111, 1645-1653.
Xu, J., Cho, H., O'Malley, S., Park, J.H., and Clarke, S.D. (2002). Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and -2 in three distinct stages and by different mechanisms. J Nutr 132, 3333-3339.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28463-
dc.description.abstract近年來脂肪肝成為已開發國家中常見的代謝失衡型流行病,初期病徵為脂質代謝失常,而於肝臟大量堆積,同時亦會伴隨發炎反應產生,進而造成肝纖維化、硬化,甚至肝衰竭或導致肝癌。二十二碳六烯酸(Docosahexaenoic acid, DHA)為人體必須的n-3多元不飽和脂肪酸,前人研究已證實DHA對人類健康極為有益,可降低脂質生成相關基因的表現,並改善心血管疾病與高血脂症。離胺酸是人體生長所須的必需胺基酸,參與肉鹼生成,並影響脂肪酸代謝。早期研究發現離胺酸可保護大鼠免於半乳糖胺造成之肝毒性,由此推測離胺酸有保護肝臟的效果。因此本研究欲探討DHA與離胺酸兩種營養素對非酒精性脂肪肝病(Non-alcoholic fatty liver disease)的影響。
活體試驗部分利用C57B/6小鼠做為動物模式,餵以高脂飼糧誘導脂肪肝形成。預備試驗中,高脂飼糧餵飼23週後的小鼠體重明顯高於對照組,其肝臟中有大量脂肪油滴堆積。而後正式試驗中,48隻小鼠分成對照組、0.5%(以平均日採食量計算)離胺酸、1 %離胺酸、1 % DHA、1 % DHA + 0.5%離胺酸以及1% DHA + 1%離胺酸六組(每組八隻),以灌食方式餵食各濃度營養素四週。各處理組的體重均較對照組低,此外,DHA處理組血清中三酸甘油酯與丙氨酸轉氨酶濃度皆顯著低於對照組,顯示飲食中添加DHA可減少脂肪堆積以保護肝臟。此外,DHA處理可降低發炎前驅因子mRNA表現,例如腫瘤壞死因子α(TNF-α)、細胞介白素1β(IL-1β)以及單核球趨化蛋白1(MCP-1)。DHA處理也同時降低脂質生成相關基因表現,例如脂肪酸合成酶(FAS)與乙醯輔脢A羧化脢1(ACC1),在肝臟與脂肪組織都有相同的結果。經由肝臟切片染色結果發現DHA與離胺酸處理皆可減少肝臟脂肪油滴堆積。
體外試驗部分利用人類肝癌細胞株SK-HEP-1處理1 mM油酸(OA)24小時做為脂肪肝細胞模式。細胞試驗分為對照組、0.1 mM DHA、4 mM離胺酸以及0.1 mM DHA + 4 mM離胺酸四個組別,分別在有OA存在與否的情況下添加不同濃度之DHA及離胺酸。實驗結果顯示DHA與離胺酸處理皆可減少FAS以及發炎前驅因子IL-6基因表現。
綜上所述,本研究證實餵飼DHA可降低小鼠血清中三酸甘油酯與丙胺酸轉胺酶濃度,並減少肝臟脂肪油滴堆積;此外,DHA處理可減低脂質生成與發炎前驅因子的表現,因而改善脂肪肝現象。而離胺酸只可減少肝臟脂肪堆積,但其調控機制以及離胺酸對脂質的影響還有待進一步釐清。因此,富有DHA與離胺酸的食物提供了改善非酒精性脂肪肝
的高度潛力。
zh_TW
dc.description.abstractFatty liver disease (FLD) is a worldwide illness, characterized with significant amount of triglyceride accumulation in the liver cells. Fatty liver progression with inflammation, FLD may further develop into fibrosis, cirrhosis and liver failure, or toward hepatocellular carcinoma. Docosahexaenoic acid (DHA) is one of essential n-3 polyunsaturated fatty acids for human. Treatment of DHA has been shown to decrease the expression of lipogenic genes and prevent some illnesses, such as cardiovascular diseases. In addition to its critical role to animal growth, lysine plays a fundamental role in carnitine synthesis, a nutrient that helps to convert fatty acids into energy. It has been shown that lysine treatment protects rats against hepatotoxic actions of D-galactosamine. Therefore, this study was designed to investigate the effects of DHA and lysine on non-alcoholic FLD.
In the in vivo study, 48 C57B/6 mice were fed with high fat diet containing 35.5% fat for 23 weeks. They were then divided into 6 groups, with oral administration of saline, 0.5% (based on daily dietary intake) lysine, 1% lysine, 1% DHA, 1% DHA + 0.5% lysine and 1% DHA + 1 % lysine for 4 weeks. Mice with high fat diet exhibited heavier body weight than those fed with control chow diet. Histological examination showed that significant and numerous fat droplets accumulated in the liver of mice with high fat diet. Compared with the saline group, mice administrated with DHA or lysine or combined with both at any given levels exhibited a decrease of body weight. Furthermore, serum triglyceride levels and alanine transaminase activities were remarkably reduced in the groups fed with DHA, indicating that DHA may reduce fat accumulation to protect liver from steatosis. Indeed, the suggestion was supported by a decrease of the transcript levels of proinflammatory cytokines genes such as tumor necrosis factor-α, interleukin 1β and monocyte chemotactic protein-1 and lipogenic gene expreesions, such as fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1) in the liver of mice with DHA treatment. Both the treatments of DHA and lysine decreased the accumulation of hepatic lipid droplets. Additionally, reduced mRNA expressions of FAS and ACC1 in mice gonadal adipose tissues by DHA treatment were observed.
In the in vitro studies, human hepatocellular carcinoma SK-HEP-1 cells were treated with 1 mM oleic acid in order to establish a cell model for fatty liver. After 24 hr culture, the steatotic hepatocytes were treated with 0.1 mM DHA, 4 mM lysine respectively or with 0.1 mM DHA + 4 mM lysine for 24 hr in the presence of or without OA. Results showed that the treatments significantly downregulated FAS and interleukin 6 transcription levels by DHA and lysine.
In conclusion, the present study suggests that DHA treatment decreases mice serum TG levels and ALT activities and reduced the hepatic lipid droplet accumulation. Moreover, treatment of DHA decreases lipogenic and inflammatory gene expressions and contributes to the amelioration of fatty liver. Lysine exerted effects only on decreasing lipid accumulation in the liver, and its regulatory mechanism required further studies. Based on the results above, foods abundant with DHA or lysine may have a high therapeutic potential in the amelioration of non-alcoholic fatty liver disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:09:00Z (GMT). No. of bitstreams: 1
ntu-100-R98626004-1.pdf: 2061666 bytes, checksum: 32aca86c2db873ba4e77bd1f2d3d977e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書#
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF TABLES viii
Introduction 1
I. Fatty liver disease 1
II. Docosahexaenoic acid and Lysine 2
III. DHA and fatty liver 4
IV. Lysine and fatty liver 7
Materials and methods 8
Animals and diets 8
Measurement of serum triacylglycerol and alanine transaminase 8
Histological analysis 9
Image analysis 9
Cell culture 9
Quantitative reverse transcription-PCR 9
Statistical Analysis 10
Results 12
Discussion 30
Reference 34
dc.language.isoen
dc.subjectSK-HEP-1 cellszh_TW
dc.subject離胺酸zh_TW
dc.subject二十二碳六烯酸zh_TW
dc.subject脂肪肝zh_TW
dc.subject小鼠zh_TW
dc.subjectSK-HEP-1 cellsen
dc.subjectfatty liveren
dc.subjectDHAen
dc.subjectlysineen
dc.subjectmiceen
dc.title口服二十二碳六烯酸與離胺酸改善小鼠脂肪肝現象zh_TW
dc.titleAmeliorating Fatty Liver through Oral Administration of Docosahexaenoic Acid and Lysine in Miceen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林美峰,歐柏榮,陳洵一
dc.subject.keyword脂肪肝,二十二碳六烯酸,離胺酸,小鼠,SK-HEP-1 cells,zh_TW
dc.subject.keywordfatty liver,DHA,lysine,mice,SK-HEP-1 cells,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2011-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved