請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝 | |
| dc.contributor.author | Tzu-Ting Lai | en |
| dc.contributor.author | 賴紫庭 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:08:55Z | - |
| dc.date.available | 2012-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | Baba, T., Ueda, H., Terada, N., Fujii, Y., and Ohno, S. (1999). Immunocytochemical study of endocytotic structures accumulated in HeLa cells transformed with a temperature-sensitive mutant of dynamin. J Histochem Cytochem 47, 637-648.
Barth, M., and Holstein, S. E. (2004). Identification and functional characterization of Arabidopsis AP180, a binding partner of plant alphaC-adaptin. J Cell Sci 117, 2051-2062. Boehm, M., and Bonifacino, J. S. (2001). Adaptins: the final recount. Mol Biol Cell 12, 2907-2920. Brand, A. H., and Dormand, E. L. (1995). The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr Opin Neurobiol 5, 572-578. Brand, A. H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., and Wakeham, D. E. (2001). Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17, 517-568. Chang, M. P., Mallet, W. G., Mostov, K. E., and Brodsky, F. M. (1993). Adaptor self-aggregation, adaptor-receptor recognition and binding of alpha-adaptin subunits to the plasma membrane contribute to recruitment of adaptor (AP2) components of clathrin-coated pits. Embo J 12, 2169-2180. Chien, C. T., Wang, S., Rothenberg, M., Jan, L. Y., and Jan, Y. N. (1998). Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol Cell Biol 18, 598-607. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R., and Owen, D. J. (2002). Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523-535. Conner, S. D., and Schmid, S. L. (2002). Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 156, 921-929. Cope, M. J., Yang, S., Shang, C., and Drubin, D. G. (1999). Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J Cell Biol 144, 1203-1218. Cousin, M. A., and Robinson, P. J. (2001). The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24, 659-665. Cousin, M. A., Tan, T. C., and Robinson, P. J. (2001). Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J Neurochem 76, 105-116. Damke, H., Baba, T., Warnock, D. E., and Schmid, S. L. (1994). Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127, 915-934. Gad, H., Low, P., Zotova, E., Brodin, L., and Shupliakov, O. (1998). Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21, 607-616. Gaidarov, I., Chen, Q., Falck, J. R., Reddy, K. K., and Keen, J. H. (1996). A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway. J Biol Chem 271, 20922-20929. Gaidarov, I., and Keen, J. H. (1999). Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol 146, 755-764. Gonzalez-Gaitan, M., and Jackle, H. (1997). Role of Drosophila alpha-adaptin in presynaptic vesicle recycling. Cell 88, 767-776. Heuser, J. E., and Keen, J. (1988). Deep-etch visualization of proteins involved in clathrin assembly. J Cell Biol 107, 877-886. Heuser, J. E., and Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57, 315-344. Hinshaw, J. E. (2000). Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16, 483-519. Keen, J. H., Willingham, M. C., and Pastan, I. H. (1979). Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16, 303-312. Koenig, J. H., and Ikeda, K. (1989). Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9, 3844-3860. Kolodziej, P. A., and Young, R. A. (1991). Epitope tagging and protein surveillance. Methods Enzymol 194, 508-519. Kosaka, T., and Ikeda, K. (1983). Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol 14, 207-225. Lee, C. L., Hsiao, H. H., Lin, C. W., Wu, S. P., Huang, S. Y., Wu, C. Y., Wang, A. H., and Khoo, K. H. (2003). Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 3, 2472-2486. Meyer, C., Zizioli, D., Lausmann, S., Eskelinen, E. L., Hamann, J., Saftig, P., von Figura, K., and Schu, P. (2000). mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. Embo J 19, 2193-2203. Olusanya, O., Andrews, P. D., Swedlow, J. R., and Smythe, E. (2001). Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr Biol 11, 896-900. Owen, D. J., Collins, B. M., and Evans, P. R. (2004). Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20, 153-191. Penkava, J., and Kubacek, V. (1974). [Oblique facial clefts]. Cesk Stomatol 74, 277-282. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567. Phelps, C. B., and Brand, A. H. (1998). Ectopic gene expression in Drosophila using GAL4 system. Methods 14, 367-379. Rio, D. C., and Rubin, G. M. (1985). Transformation of cultured Drosophila melanogaster cells with a dominant selectable marker. Mol Cell Biol 5, 1833-1838. Robinson, M. S. (2004). Adaptable adaptors for coated vesicles. Trends Cell Biol 14, 167-174. Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27, 353-365. Slepnev, V. I., and De Camilli, P. (2000). Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 1, 161-172. Smith, C. J., and Pearse, B. M. (1999). Clathrin: anatomy of a coat protein. Trends Cell Biol 9, 335-338. Smythe, E. (2002). Regulating the clathrin-coated vesicle cycle by AP2 subunit phosphorylation. Trends Cell Biol 12, 352-354. Smythe, E., and Ayscough, K. R. (2003). The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep 4, 246-251. Steen, H., and Mann, M. (2004). The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699-711. Szymkiewicz, I., Shupliakov, O., and Dikic, I. (2004). Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 383, 1-11. van der Bliek, A. M., Redelmeier, T. E., Damke, H., Tisdale, E. J., Meyerowitz, E. M., and Schmid, S. L. (1993). Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122, 553-563. Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., and Dunn, M. J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666-3672. Zhang,C.X.,Engqvist-Goldstein,A.E.,Carreno,S.,Owen,D.J.,Smythe,E.,and Drubin, D.G.(2005). Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic6, 1103-1113. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28460 | - |
| dc.description.abstract | 內吞作用在生物體內是一種非常重要的機制,其中包括了調節在細胞膜上的受體活性的調控以及因應細胞外訊息而調節特殊物質的吸收.內吞作用主要可以分成三個步驟:1.囊胞形成,2.囊胞內陷及從細胞膜上分離,3.相關作用蛋白的剝落.在第一個步驟囊胞形成時需要兩個重要的蛋白質,分別是clathrin以及clathrin輔助蛋白AP2(clathrin adaptor protein 2),clathrin輔助蛋白含有四個不同的組成,分別是alpha蛋白,beta蛋白,AP50蛋白,以及sigma蛋白,在之前的研究指出AAK1(adaptor protein kinase 1)在進行囊泡形成時會磷酸化AP50,幫助細胞膜上受體的回收,在果蠅中AAK1的相似蛋白稱為Nak(Numb-associated protein), Nak在1998年經由酵母菌雙雜合系統(yeast two hybrid)以numb為餌調到的作用蛋白,在實驗室之前的研究發現在Nak核酸干擾果蠅中發現對於神經樹突發育有影響,在此篇論文便是探討在果蠅中Nak是否扮演跟在哺乳動物中AAK1在內吞作用當中扮演一樣的角色或是亦在其他步驟仍有功能.
本論文搭配質譜技術的分析以及免疫沈澱技術法的配合,研究Nak在內吞作用中扮演的角色,實驗結果發現此蛋白在質譜分析之下會和clathrin輔助蛋白作用,但其中和AP50蛋白的作用力最弱,因此我們推測Nak蛋白可能會影響clathrin輔助蛋白的組成,此外利用在哺乳系統中dynamin的相似蛋白shibire之溫度調控突變株發現,Nak的確不是作用在囊泡內陷這個步驟,有可能參與在內吞作用當中較後面的步驟,配合本論文對於Nak和clathrin輔助蛋白的研究,可以更進一步瞭解Nak在內吞作用當中對於果蠅樹突發育的影響. | zh_TW |
| dc.description.abstract | Endocytosis is a fundamental step to regulate a diverse array of cellular activities. In response to signals, the process of endocytosis can mediate membrane receptor recycling, and cargos delivery to intracellular organelles. The phosphorylation state of endocytic components, such as the adaptor protein complex 2 (AP2) and the engulfed membrane, can modulate clathrin-coated pit formation and cargo selection. The ARK family of serine/threonine kinases is shown to regulate endocytosis through the phosphorylation of various endocytic components. Numb associated kinase (Nak), the only ARK member in Drosophila, bears a serine/threonine kinase domain at the amino-terminus and various endocytic motifs, including DLL for interacting with clathrin and DPF for α-adaptin. To investigate possible signaling pathways and cellular mechanisms regulated by Nak, I have performed immunoprecipitation for Nak and identified proteins associated with Nak by Mass-Spectrometry (MS). Through the MS analysis, I have identified α-adaptin, β-adaptin and the u2 subunit AP50 of the AP2 complex. With the complex association in the dynamin mutant, shibire, I suggest that Nak may take part in late steps of endocytosis. I also performed a male recombination experiment to screen for nak mutants for further functional analysis. Several hypomorphic alleles obtained in this screening show reductions in mRNA and protein levels. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:08:55Z (GMT). No. of bitstreams: 1 ntu-96-R92b46012-1.pdf: 1694965 bytes, checksum: 7292f975d00815ef08186f44045e3e34 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of contents
Table of contents……………………………………………………………………..I Abbreviation…………………………………………………………………………1 Abstract………………………………………………………………………………2 Chapter 1. Introduction 1. Clathrin-mediated endocytosis…………………………………………………….3 2. Molecular architecture of adaptor proteins…………………………………….......4 3. Adaptor protein complexes in the Drosophila melanogaster………………………5 4.Shibire temperature sensitive mutants specifically block the clathrin-coated vesicles.………………………………………………………………………………5 5. Regulation of clathrin-mediated endocytosis by phosphorylation………………...6 6. Nak, a member of the Ark family……………………………………………….....6 7. Mass spectrometry…………………………………………………………………7 8. Specific aims………………………………………………………………………10 Chapter 2. Materials and Methods Materials and methods 1. Constructs…………………………………………………………………………11 2. Antibodies…………………………………………………………………………11 3. Site-directed mutagenesis and molecular cloning………………………………...12 4. RT-PCR……………………………………………………………………………13 5. Cell Culture……………………………………………………………………......13 6. S2 cell transient transfection………………………………………………………13 7. SDS-PAGE and immunobloting…………………………………………………..14 8. Immunoprecipitation………………………………………………………………14 9. Silver staining and Sypro-Ruby staining………………………………………..15 10. Sample preparation for Mass spectrometry……………………………………..16 11. Fly strains and male recombination mutagenesis……………………………….16 Chapter 3: Results 1. Two subunits of adaptor proteins were specifically immunoprecipitated by myc-Nak in S2 cells………………………………………………………………….18 2. Association of AP50 to Nak………………………………………………………19 3. AP50 was immunoprecipitated by Flag-Nak in the Drosophila embyo…………..20 4. α-adaptin binding motifs in Nak is important for the interaction with AP2………21 5. Nak may participate in late step of the endocytosis…………………..…………..22 6. Analysis of the Nak recombination hypomorph alleles…………………………..23 Chapter 4. Discussion 1. Why only AP2 complexes are identified in mass spectrometry analysis?...............25 2. The modification of AP50 in the endocytosis……………………………………..26 3. Whether Nak affects the subunit stochiometry of the AP2 complex ?…………………………………………………………………………….27 4. The effect of NakmDPF mutant…………………………………………………..28 5. The P-element line GE10537 is a hypomorphic allele of nak…………………….29 6. Possible functions of Nak in the endocytosis……………………………………..29 Reference……………………………………………………………………………31 Appendix Table Table1. Mass spectrometrically identified Drosophila Nak interacting proteins ( I ) Table2. Mass spectrometrically identified Drosophila Nak interacting proteins ( II ) Table3. Mass spectrometrically identified Drosophila Nak interacting proteins ( III ) Table4. Hypomorphs generated in the one round of male recombination experiment Figure Fig.1 Fly Nak associates with potentially AP2 complex…………………………….35 Fig.2 Fly Nak associates with potentially AP2 complex in vivo…………………….36 Fig.3 Nak can interact with α-adaptin………………..…………………………….37 Fig.4 The different components of AP2 complex binds with Nak…………………..38 Fig.5Double-confirm the association between Nak and AP2 complex in fly embryo……………………………………………………………………………….39 Fig.6 Schematic representation of flag-Nak, flag-NakmDPF1/2 constructs used…...40 Fig.7 The association between AP50 and Nak is dependent on α-adaptin………...41 Fig.8 The procedure of the male recombination experiment………………………..43 Fig.9 The male recombination lines, MR2~MR8, was a hypomorphic allele of Nak…………………………………………………………………………………..44 Fig.10 Nak might take part in the late steps of the endocytosis……………………..46 | |
| dc.language.iso | en | |
| dc.subject | 內吞作用 | zh_TW |
| dc.subject | Nak | zh_TW |
| dc.subject | AP2 | zh_TW |
| dc.subject | AP2 | en |
| dc.subject | endocytosis | en |
| dc.subject | Nak | en |
| dc.title | 研究在內吞作用當中Nak和AP2的關連性 | zh_TW |
| dc.title | Association of Nak with AP2 in Endocytosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 簡正鼎 | |
| dc.contributor.oralexamcommittee | 孟子青,陳光超 | |
| dc.subject.keyword | 內吞作用,Nak,AP2, | zh_TW |
| dc.subject.keyword | endocytosis,Nak,AP2, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
