Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李德財
dc.contributor.authorTien-Ching Linen
dc.contributor.author林添進zh_TW
dc.date.accessioned2021-06-13T00:08:50Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation[1] R. Agrawal, T. Imielinski, and A. Swami. Data mining using two-dimensional optimized
association rules: scheme, algorithms, and visualization. Proceedings of the 1993 ACM
SIGMOD international conference on management of data, 207-216, 1993.
[2] M. Ajtai, A. Koml´os, and E. Szemer´edi. An O(n log n) sorting networks. Combinatorica,
3:1–19, 1983.
[3] S. Alk and G. Guenther. Application of broadcasting with selective reduction to the
maximal sum subsegment problem. International journal of high speed computating,
3:107-119, 1991.
[4] N. Alon, H. S. Joel, and E. Paul. The Probabilistic Method, Wiley-Interscience Series.
[5] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215:403-410, 1990.
[6] S. E. Bae and T. Takaoka. Algorithms for the problem of k maximum sums and a VLSI
algorithm for the k maximum subarrays problem. 2004 International Symposium on
Parallel Architectures, Algorithms and Networks, 247-253, 2004.
[7] S. E. Bae and T. Takaoka. Improved Algorithms for the K-Maximum Subarray Problem
. The Computer Journal, 2006 49(3):358-374.
[8] G. Barhardi. Isochores and the evolutionary genomics of vertebrates. Gene, 241:3–17,
2000.
[9] F. Bengtsson and J. Chen. Efficient Algorithms for K Maximum Sums. Algorithmica,
2006 46:27-41.
[10] A. Bergkvist and P. Damaschke Fast Algorithms for Finding Disjoint Subsequences
with Extremal Densities. Algorithms and Computation, 16th International Symposium,
ISAAC 2005, 714-723.
[11] F. Bengtsson and J. Chen. Computing Maximum-Scoring Segments in Almost Linear
Time. Computing and Combinatorics, 12th Annual International Conference, COCOON
2006, 255-264, 2006.
[12] J. Bentley. Programming pearls: algorithm design techniques. Commun. ACM, 27,
9:865-873, 1984.
[13] J. Bentley. Programming pearls: algorithm design techniques. Commun. ACM, 27,
11:1087-1092, 1984.
[14] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM
Sympos. Theory Comput., pages 80-86, 1983.
[15] G. Bernardi and G. Bernardi. Compositional constraints and genome evolution. Journal
of Molecular Evolution, 24:1–11, 1986.
[16] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bound for
selection. Journal of Computer and System Sciences, 7(4):448–461. 1973.
[17] H. Br¨onnimann and B. Chazelle. Optimal slope selection via cuttings. Computational
Geometry — Theory and Applications, 10(1):23–29, 1998.
[18] Y.-H. Chen, H.-I. Lu, and C.-Y. Tang. Disjoint segments with maximal density. Proceedings
of the International Conference on Computational Science, volumn 3515 of LNCS,
845-850, 2005.
[19] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao. Improved algorithms for the
k maximum-sums problems. Theoretical computer science, 362: 162-170, 2006.
[20] K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-density segment
problem. SIAM Journal on Computing, 34(2):373–387, 2004.
[21] R. Cole. Slowing down sorign networks to obtain faster sorting algorithm. Journal of
the association for computing machinery, Vol. 34, No. 1:200–208, 1987.
[22] R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi. An optimal-time algorithm for
slope selection. SIAM Journal on Computing, 18(4):792–810, 1989.
[23] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to algorithms, MIT Press,
1998.
[24] R. Davuluri, I. Grosse, M. Zhang. Computational identification of promoters and first
exons in the human genome. Nature Genetics, 29:412-417, 2001.
[25] M. De Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 1997.
[26] M. H. Dillencourt, M. H. Mount,and N. S. Netanyahu. A randomized algorithm for
slope selection. International Journal of Computational Geometry and Applications,
vol. 2, No. 1:1–27, 1992.
[27] T.-H. Fan, S. Lee, H.-I. Lu, T.-S. Tsou, T.-C. Wang, and A. Yao. An optimal algorithm
for maximum-sum segment and its application in bioinformatics. Eighth International
Conference on Implementation and Application of Automata (CIAA 2003), 251-257.
[28] P. Fariselli, M. Finelli, M. Marchignoli, P. L. Martelli, I. Rossi, and R. C. Maxsubseq.
An algorithm for segment-length optimization. The case study of the transmembrane
spanning segments. Bioinformatics, 19:500–505, 2003.
[29] W. F. Robert and L. R. Ronald. Expected time bounds for selection. Communications
of the ACM, 18(3):165-172. 1975.
[30] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining association rules
between sets of items in large databases. Proceedings of the 1996 ACM SIGMOD international
conference on management of data, 13-23, 1996.
[31] M. H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Fast algorithms for finding maximumdensity
segments of a sequence with applications to bioinformatics. In R. Guig´o and
D. Gusfield, editors, Proceedings of the Second International Workshop of Algorithms in
Bioinformatics, Lecture Notes in Computer Science 2452, pages 157–171, Rome, Italy,
2002. Springer-Verlag.
[32] M. H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-time algorithms for computing
maximum-density sequence segments with bioinformatics applications. Journal of Computer
and System Sciences, 70(2), 128–144, 2005.
[33] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132-133, 1972.
[34] D. Gries. A note on the standard strategy for developing loop invariants and loops.
Science of computer programming, 2:207-214, 1982.
[35] S. Hannenhalli and S. Levy. Promoter prediction in the human genome. Bioinformatics,
17:S90-S96, 2001.
[36] C. A. R. Hoare. Algorithm 63 (partition) and algorithm 65 (find). Communications of
the ACM, 4(7):321–322, 1961.
[37] S.-Y. Hsieh and T.-Y. Chou. Finding a Weight-Constrained Maximum-Density Subtree
in a Tree. Algorithms and Computation, 16th International Symposium, ISAAC 2005,
944-953.
[38] X. Huang. An algorithm for identifying regions of a DNA sequence that satisfy a content
requirement. Computer Applications in the Biosciences, 10(3):219–225, 1994.
[39] I. P. Ioshikhes and M. Q. Zhang. Large-scale human promoter mapping using CpG
islands. Gene, Nature Genetics 26:61–63, 2000.
[40] N. C. Jones and P. A. Pevzner. An Introduction to Bioinformatics Algorithms, MIT
Press, 1998..
[41] M. J. Katz and M. Sharir. Optimal slope selection via expanders. Information Processing
Letters, 47(3):115–122, 1993.
[42] S. K. Kim. Linear-time algorithm for finding a maximum-density segment of a sequence.
Information Processing Letters, 86(6):339–342, 2003.
[43] T.-C. Lin and D. T. Lee. Randomized algorithm for the sum selection problem. Algorithms
and computation, 16th international symposium, ISAAC 2005, 515-523.
[44] T.-C. Lin and D. T. Lee. Efficient algorithms for the sum selection problem and k
maximum sums problem. Algorithms and computation, 17th international symposium,
ISAAC 2006, 460-473.
[45] T.-C. Lin and D. T. Lee. Randomized algorithm for the sum selection problem. Theoretical
computer science, 377(1-3):151-156, 2007.
[46] T.-C. Lin and D. T. Lee. Efficient algorithms for the sum selection problem and k
maximum sums problem. Submitted to SICOMP.
[47] D. T. Lee., T.-C. Lin, and H.-I. Lu. Fast Algorithms for the Density Finding Problem
Conditionally accepted by Algorithmica.
[48] R.-R. Lin, W.-H. Kuo, and K.-M. Chao. Finding a Length-Constrained Maximum-
Density Path in a Tree. Journal of Combinatorial Optimization, 9(2), 147–156, 2005.
[49] Y.-L. Lin, T. Jiang, and K.-M. Chao. Algorithms for locating the length-constrained
heaviest segments, with applications to biomolecular sequence analysis. Journal of
Computer and System Sciences, 65(3):570–586, 2002.
[50] Y. -L. Lin, X. Huang, T. Jiang, and K.-M. Chao. MAVG: locating non-overlapping
maximum average segments in a given sequence. Bioinformatics, 19(1):151–152, 2003.
[51] J. Matouˇsek. Randomized optimal algorithm for slope selection. Information Processing
Letters, 39(4):183–187, 1991.
[52] J. Matouˇsek. Approximations and optimal geometric divide-and-conquer. Proc. 23rd
ACM Symp. on Theory of Computing, 1–10, 1991.
[53] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,
1985.
[54] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithm.
Journal of the association for computing machinery, Vol. 30, No. 4:852–865, 1983.
[55] C. Mikl´os. Maximum-scoring segment sets. IEEE/ACM Transations on Computatonal
Biology and Bioinformatics, 1(4):139–150, 2004.
[56] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, Cambridge.
[57] A. Nekrutenko and W.-H. Li. Assessment of compositional heterogeneity within and
between eukaryotic genomes. Genome Research, 10:1986–1995, 2000.
[58] U. Ohler, H. Niemann, G. Liao, and G. M. Rubin. Joint modeling of DNA sequence
and physical properties to improve eukaryotic promoter recognition. Bioinformatics,
17:199–206, 2001.
[59] K. Perumalla and N. Deo. Parallel algorithms for maximum subsequence and maximum
subarray. Parallel Processing Letters, 5:367-373, 1995.
[60] K. Qiu and S. Alk. Parallel maximum sum algorithms on interconnection networks.
Technical Report No. 99-431, Jodrey School of Computer Science, Acadia University,
Canada, 1999.
[61] P. Rice, I. Longden, and A. Bleasby. Emboss: The European molecular biology open
software suite. Trends Genet., 16:276–277, 2000.
[62] D. Smith. Applications of a strategy for designing divide-and-conquer algorithms. Science
of Computer Programming, 8:213-229, 1987.
[63] N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman, W. Miller,
and R. Hardison. Comparison of five methods for finding conserved sequences in multiple
alignments of gene regulatory regions. Nucleic Acids Research, 27:3899–3910, 1999.
[64] T. Takaoka. Efficient algorithms for the maximum dubarray problem by fistance matrix
multiplication. Proceedings of the 2002 australian theory symposium, 189-198, 2002.
[65] H. Tamaki and T. Tokuyama. Algorithms for the maximum subarray problem based
on matrix multiplication. Proceedings of the ninth annual ACM-SIAM symposium on
discrete algorithms, 446-452, 1998.
[66] R. E. Tarjan. Updating a balanced search tree in O(1) rotations. Information Processing
Letters, 16:253–257, 1983.
[67] R. Walder, M. Garrett, A. McClain, G. Beck, T. Brennan, N. Kramer, A. Kanis, A.
Mark, A. Rapp, and V. Sheffield. Short tandem repeat polymorphic markers for the rat
genome from marker-selected libraries associated with complex mammalian phenotypes.
Mammallian Genome, 9:1013–1021, 1998.
[68] B. Y. Wu, K. M. Chao, and C. Y. Tang An Efficient Algorithm for the Length-
Constrained Heaviest Path Problem on a Tree. Information Processing Letters, 69,
63–67, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28457-
dc.description.abstract本論文主要在研究兩類問題:序列的最佳化問題(optimization problems on
sequences)與序列的範圍搜尋問題(range query problems on sequences)。我們會將與這兩類問題相關的所有問題做全面地概述並依據問題難易程度做分類,介紹解決這兩類問題的技巧,並討論它們的一些應用。
我們會先研究:序列的最佳化問題。我們會把研究焦點放在序列和的選擇問題(Sum Selection Problem),這個問題是三個很有名的問題的推廣,包括:計算生物學上的最大序列和問題(Maximum Sum Problem)、有限長度的最大序列和問題(Maximum-Sum Segment Problem)與在資訊科學上的選擇問題(Selection Problem)。我們會對序列和的選擇問題分別給出一個隨機的演算法與一個決定性的演算法。我們接著會將這二個演算法結合序列和的範圍搜尋問題(Sum Range Query Problem)的演算法來給出二個前k大序列和問題(k Maximum Sums Problem)的演算法,這二個演算法均改進了目前這個問題的最佳演算法。
我們然後研究序列密度的選擇問題(Density Selection Problem),這個問題也是三個很有名的問題的推廣,包括:計算生物學上的有限長度的最大序列密度問題(Maximum-Density Segment Problem)、計算幾何學上的斜率選擇問題(Slope Selection Problem)與在資訊科學上的選擇問題(Selection Problem)。我們會對序列密度的選擇問題給出一個最佳的隨機演算法。我們接著會將這個演算法結合序列密度的範圍搜尋問題(Density Range Query Problem)的演算法來給出一個前k大序列密度問題(k Maximum Densities Problem)最佳的隨機演演算法。
我們也研究了有限長度的最大序列密度問題的另一個推廣問題稱之為序列密度的找尋問題(Density Finding Problem)。對於沒有寬度上界的情況,我們會給出一個最佳的演算法。但對於一般的情況,我們只給出一個次佳的演算法。另外,我們也給出有限長度的最大序列密度問題的另一個最佳的演算法。
接著我們會研究:序列的範圍搜尋問題,包括:序列和的範圍搜尋問題(Sum Range Query Problem) 序列密度的範圍搜尋問題(Density Range Query Problem)。對於這二個問題,我們分別給出一個報導模式(reporting mode)與計數模式(counting mode)的演算法。對於序列密度的範圍搜尋問題我們證明了這二個演算法都是最佳的。這二個問題對於在解決序列的最佳化問題上有很大的應用。
zh_TW
dc.description.abstractThe dissertation will focuses on the optimization problems on sequences and range query
problems on sequences. We will survey and classify the related problems, introduce some
techniques for solving these kinds of problems and, discuss their possible biological applications.
We first consider some optimization problems on sequences. We focus on the Sum Selection
Problem which is a generalization of several famous problems, including Maximum
Sum Problem, Maximum-Sum Segment Problem in computational biology, and
Selection Problem in computer science. We will give a randomized algorithm and a
deterministic algorithm for this problem respectively, and combine them with the algorithm
for the Sum Range Query Problem to give two improved algorithms for the k Maximum
Sums Problem. We then consider the Density Selection Problem, which is
also a generalization of several famous problems, including Maximum-Density Segment
Problem in computational biology, Slope Selection Problem computational geometry,
and Selection Problem in computer science. We will give an optimal randomized
algorithm for this problem and combine it with the algorithm for the Density Range
Query Problem to give an optimal algorithm for the k Maximum Densities Problem.
We also consider another generalization of Maximum-Density Segment Problem called
Density Finding Problem. We give an optimal algorithm for the Density Finding
Problem for the case when there is no upper bound on the width of the sequence, and an
algorithm for general case. As a byproduct, we give another optimal time algorithm for the
Maximum-Density Segment Problem.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:08:50Z (GMT). No. of bitstreams: 1
ntu-96-D89922001-1.pdf: 598937 bytes, checksum: f44c7bd519e3f318db71cf2f3c5b5cbd (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 Introduction 1
1.1 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Relationship to Traditional Computational Problems . . . . . . . . . . . . . 3
1.4 Basic Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.1 Related optimization problems on sequences . . . . . . . . . . . . . . 5
1.5.2 Related range query problems on sequences . . . . . . . . . . . . . . 10
1.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Optimization Problems on sequences: Sum Selection Problem 13
2.1 Reduction to a Geometric Intersection Selection Problem . . . . . . . . . . . 13
2.2 Deterministic Algorithm for Sum Selection Problem and k Maximum Sums
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Randomized Algorithm for Sum Selection Problem and k Maximum Sums
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Optimization Problems on sequences: Density Selection Problem 40
3.1 Reduction to a Geometric Slope Selection Problem . . . . . . . . . . . . . . 40
3.2 Randomized Algorithm for Density Selection Problem and k Maximum Densities
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Optimization Problems on sequences: Density Finding Problem 49
4.1 Reduction to a Geometric Slope Finding Problem . . . . . . . . . . . . . . . 49
iv
4.2 Algorithm for Density Finding Problem . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Special case when u = w(1; n) . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 General case when u < w(1; n) . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Algorithm for Maximum-Density Segment Problem . . . . . . . . . . . . . . 62
5 Range Query Problems on sequences 69
5.1 Sum Range Query Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Density Range Query Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Conclusion 77
6.1 Techniques for Sequence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Future Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dc.language.isoen
dc.subject序列的最佳化問題zh_TW
dc.subject序列的範圍搜尋問題zh_TW
dc.subjectoptimization problems on sequencesen
dc.subjectrange query problems on sequencesen
dc.title序列操作與相關問題之演算法研究zh_TW
dc.titleAlgorithmic Studies of Sequence Manipulation and Related Problemsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee高明達,何錦文,謝孫源,項天瑞
dc.subject.keyword序列的最佳化問題,序列的範圍搜尋問題,zh_TW
dc.subject.keywordoptimization problems on sequences,range query problems on sequences,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
584.9 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved