Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28413
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorChen-Hsien Leeen
dc.contributor.author李承先zh_TW
dc.date.accessioned2021-06-13T00:07:35Z-
dc.date.available2012-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citationAndersen, H. R., A. M. Vinggaard, T. H. Rasmussen, I. M. Gjermandsen and E. C. Bonefeld-Jorgensen. 2002. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology 179: 1-12.
Belanger, P., C. C. Nast, R. Fratti, H. Sanati and M. Ghannoum. 1997. Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and -resistant Candida species. Antimicrobial Agents and Chemotherapy 41:1840-1842.
Blagovic, B. J. Rupcic, M. Mesaric and V. Maric. 2005. Lipid analysis of the plasma membrane and mitochondria of brewer's yeast. Folia Microbiologica 50: 24-30.
Blumberg, H., T. A. Hartshorne, and E. T. Young. 1988. Regulation of expression and activity of the yeast transcription factor ADR1. Molecular and Cellular Biology. 8:1868-1876.
Chang, C.Y., C. L. Lee and T. M. Pan. 2006. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures. Applied Microbiology and Biotechnology. 72: 654-661.
Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Chang, T.T. and W.N. Chou. 1995. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research 99: 756-758.
Chang, T.T. and W.R. Wang. 2005. Basidiomatal formation of Antrodia cinnamomea on artificial agar media. Botanical bulletin of Academia Sinica 46: 151-154.
Chen, C. H., S. W. Yang and Y. C. Shen. 1995. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. Journal of Natural Products 58: 1655-1661.
Chen, C. C., C. C. Chyau and T. H. Hseu. 2007. Production of a COX-2 inhibitor, 2,4,5-trimethoxybenzaldehyde, with submerged cultured Antrodia camphorata. Letters in Applied Microbiology 44: 387-392.
Cheng, C., N. Kacherovsky, K. M. Dombek, S. Camier, S. K. Thukral, E. Rhim and E. T. Young. 1994. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Molecular and Cellular Biology 14: 3842-3852.
Cheng, J. J., N. K. Huang, T. T. Chang, D. L. Wang, and M. K. Lu. 2005. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Sciences 76: 3029-3042.
Chiew, Y.Y., P. A. Sullivan and M. G. Shepherd. 1982. The Effect of Ergosterol and Alcohols on Germ-Tube Formation and Chitin Synthase in Candida albicans. Canadian Journal of Chemistry 60: 15-20.
Chiu, H. H. 2007. Phylogenetic analysis of Antrodia species and Antrodia cinnamomea inferred from internal transcribed spacer region. Antonie van Leeuwenhoek 91: 267-276.
Chu, F. H. and T. T. Chang .2007. Basidiomatal formation in Antrodia cinnamomea from the perspective of gene expression. Botanical Studies (in press)
Debeljak, N., M. Fink and D. Rozman. 2003. Many facets of mammalian lanosterol 14α-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Archives of Biochemistry and Biophysics. 409: 159-171.
Eisenkolb. M., C. Zenzmaier, E. Leitner and R. Schneiter. 2002. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Molecular Biology of the Cell 12: 4414-4128.
Fischer, R. T., J. M. Trzaskos, R. L. Magolda, S. S. Ko, C. S. Brosz and B. Larsen. 1991. Lanosterol 14 alpha-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate, Journal of Biological Chemistry 266: 6124-6132.
Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews 62: 334-361.
Griffiths, K. M. and Howlett. B. J. 2002. Transcription of sterol Δ5,6-desaturase and sterol 14α-demethylase is induced in the plant pathogenic ascomycete, Leptosphaeria maculans, during treatment with a triazole fungicide. FEMS Microbiology Letters 217: 81-87.
Groot, P. W. J., L. J. L. Griensven, Van Griensven. and J. Visser. 1997. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology 143: 1993-2001.
Hamamoto. H., K. Hasegawa and T. Nakaune R. 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Applied and Environmental Microbiology 66: 3421-3426.
Han, J. Y., Y. S. Kwon, D. C. Yang, Y. R. Jung, and Y. E. Choi. 2006. Expression and RNA Interference-Induced Silencing of the Dammarenediol Synthase Gene in Panax ginseng. Plant and Cell Physiology 47: 1653-1662.
Hirano, T., T. Sato. and H. Enei. 2004. Isolation of genes specifically expressed in the fruit body of the edible basidiomycete Lentinula edodes. Bioscience, Biotechnology, and Biochemistry 68: 468-472.
Hsu, F. L., C. J. Chou, Y. C. Chang. and T. T. Chang. 2006. Promotion of hyphal growth and underlying chemical changes in Antrodia camphorata by host factors from Cinnamomum camphora. International Journal of Food Microbiology 106: 32-38.
Kahn, R.A., S. Bak, C. E. Olsen, I. Svendsen and B. L. Moller. 1996. Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench. Journal of Biological Chemistry 271: 32944-32950.
Kalb, V. F., C. W. Woods, T. G. Turi, C. R. Dey, T. R. Sutter and J. C. Loper 1987. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6: 529-537.
Kelly, S. L., D. C. Lamb, M. Cannieux M, D. Greetham, C. J. Jackson, T. Marczylo, V. Ugochukwu and D. E. Kelly. 2001. An old activity in the cytochrome P450 superfamily (CYP51) and a new story of drugs and resistance. Biochemical Society Transactions 29: 122-128.
Lamb, D.C., D. E. Kelly and S. L. Kelly. 1998a. Molecular diversity of sterol 14α-demethylase substrates in plants, fungi and humans. FEBS Letters 425: 263-265.
Lamb, D. C., D. E. Kelly, N. J. Manning, D. W. Hollomon. and S. L. Kelly. 1998b. Expression, purification, reconstitution and inhibition of Ustilago maydis Sterol 14α-demethylase (CYP51; P450(14DM)). FEMS Microbiology Letters 169: 369-373.
Lamb, D. C., K. Fowler, T. Kieser, N. Manning, L. M. Podust, M. R. Waterman, D. E. Kelly and S. L. Kelly. 2002. Sterol 14α-demethylase activity in Streptomyces coelicolor A3(2) is associated with an unusual member of the CYP51 gene family. Biochemical Journal 364: 555-562/
Lees, N.D., M. Bard and D. R. Kirsch. 1999. Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Critical Reviews in Biochemistry and Molecular Biol34: 33–47.
Lepesheva, G. I. and M. R. Waterman. 2007. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochimica et Biophysica Acta 1770: 467-477.
Lepesheva, G. I., C. Virus and M. R. Waterman. 2003. Conservation in the CYP51 Family. Role of the B' Helix/BC Loop and Helices F and G in Enzymatic. Function Biochemistry 42: 9091-9101.
Li, G., M.L. Xu., C.S. Lee, M.H. Woo, H.W. Chang and J.K. Son. 2004. Cytotoxicity and DNA topoisomerases inhibitory activity of constituents from the sclerotium of Poria cocos. Archives of Pharmacal Research 27: 829-33.
Liu, C. J. 2007. The influence of elicitors and two-stage culture on triterpenoids production and antitumor activity in submerged cultivation of Antrodia cinnamomea. (Master dissertation, National Taiwan University)
Liu, D. Z., Y. C. Liang, S. Y. Lin, Y. S. Lin, W. C. Wu., W. C. Hou and C. H. Su. 2007 Antihypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-chih) in spontaneously hypertensive rats. Bioscience Biotechnology and Biochemistry 71: 23-30.
Mallory, J. C., G. Crudden, B. L. Johnson, C. Mo, C. A. Pierson, M. Bard and P. J. Craven. 2005. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Molecular and Cellular Biology 25: 1669-1679.
Marzluf, G. A. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiologic and Molecular Biology Reviews 61:17-32.
Mejanelle, L., J. F. Lopez, N. Gunde-Cimerman and J.O. Grimalt. 2001. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. Journal of Lipid Research 42: 352-358.
Miller, W. L. 2005. Minireview: regulation of steroidogenesis by electron transfer. Endocrinology 146: 2544-2550.
Muraguchi, H. and T. Kamada. 2000. A mutation in the elen2 gene encoding a chtochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genetics and Biology 29: 49-59.
Mysyakina, I. S., N. S. Funtikova and F. A. Medvedev. 2002. Sterol Composition of the Arthrospores and Mycelium of the Fungus Mucor hiemalis. Microbiology 71: 404-409.
Mysyakina, I. and N. Funtikova. 2007. The Role of Sterols in Morphogenetic Processes and Dimorphism in Fungi. Microbiology 76: 5-18.
Nes, D. W., Janssen, G. G. Crumley, F. G. Kalinowska and T. Akihisa. 1993. The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 300: 724-733.
Nes, W. R. In: Nes, W. D., G. Fuller and L.S. Tsai. Editors. 1984. Isopentenoids in Plants: Biochemistry and Function. Marcel Dekker. New York 325.
Nelson, D. R. 1999. Cytochrome P450 and the individuality of species. Archives of Biochemistry and Biophysics 369: 1-10.
Parks, L. W., J. H. Crowley., F. W. Leak., S. J. Smith and M. E. Tomeo. 1999. Use of sterol mutants as probes for sterol functions in the yeast Saccharomyces cerevisiae. Critical Reviews in Biochemistry and Molecular Biology 34: 399-404.
Peng, C.C., K. C. Chen, P. Y. Peng, C. C. Chyau, C. H. Su and H. M. Hsieh-Li. 2007. Antrodia cinnamomea extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. Journal of Ethnopharmacology 109: 93-103.
Pesti, M., J. M. Campbell and J. F. Peberdy. 1981. Alteration of Ergosterol Content and Chitin Synthase Activity in Candida albicans. Current Microbiology 5: 187-190.
Pietila, M. P., P. K. Vohra, B. Sanyal, N. L. Wengenack, S. Raghavakaimal and C. F. Thomas. 2006. Cloning and Characterization of CYP51 from Mycobacterium avium. American Journal of Respiratory Cell and Molecular Biology 35: 236-242.
Premakumar, R., G. J. Sorger and D. Gooden. 1980. Physiological characterization of a Neurospora crassas mutant with impaired regulation of nitrate reductase. Journal of Bacteriology 144: 542-551.
Shen. Y. C., Y. H. Wang, Y. C. Chou, C. F. Chen, L. C. Lin, T. T. Chang, J. H. Tien and C. J. Chou. 2004. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia cinnamomea. Planta Medica 70: 310-331.
Rozman, D. and M. R. Waterman. 1998. Lanosterol 14 alpha-demethylase (CYP51) and spermatogenensis 26: 1199-1201.
Shen. C., Y. Kuo, R. Huang, L. Lin, M. Dong, T. Chang and C. Chou. 2003. Studies on the bioactive principles of Antrodia camphorate. Chinese Medical journal 14: 247–258.
Soares, R. A. M., J. Angluster, W. Souza and C. S. Alviano. 1995. Carbohydrate and lipid components of hyphae and conidia of human pathogen Fonsecaea pedrosoi. Mycopathologia 132: 71-77.
Sunagawa. M and Y. Magae. 2005. Isolation of genes differentially expressed during fruit body development of Pleurotus osreatus by differential display of RAPD. FEMS Microbiology Letters 246: 279-284.
Takaku, T., Y. Kimura and H. Okuda 2001 Isolation of an antitumor compound from Agaricus blazei Murill and its Mechanism of action. Journal of Nutrition 131: 1409-1413.
Tao. Y. and G. A. Marzluf. 1999. The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit-2 mRNA and protein. Current Genetics 36: 153-158.
Taton. M and A. Rahier. 1991. Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 α-demethylase from maize (Zea mays) seedlings. Biochemical Journal 277: 483-492.
Tijet. N., C. Helvig and R. Feyereisen. 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262: 189-198.
Toyomasu. T., K. Nakaminami, H. Toshima, T. Mie, K. Watanabe, H. Ito, H. Matsui, W. Mitsuhashi, T. Sassa and H. Oikawa. 2004. Cloning of a gene cluster responsible for the biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase alpha. Bioscience, Biotechnology, and Biochemistry 68:146-152.
Trzaskos, J. M., W. D. Bowen, A. Shafiee, R. T. Fischer and J. L. Gaylor. 1984. Cytochrome P450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. Journal of Biological Chemistry 259: 13402-13412.
Vallari, R. C., W. J. Cook, D.C. Audino, M. J. Morgan, D. E. Jensen, A. P. Laudano and C. L. Denis. 1992. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Molecular and Cellular Biology 12: 1663-1673.
Vanden Bossche, H., G. Willemsens, W. Cools, P. Marichal and W. Lauwers. 1983. Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochemical Society transactions 1: 665-667.
Wang, S. Y., M. L. Hsu, H. C. Hsu, C. H. Tzeng, S. S. Lee, M. S. Shiao. and C. K. Ho. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal of Cancer 70: 699-705.
Weete, J. D. 1989. Structure andfunction of sterols in fungi. Advances in Lipid Research 23: 115-167.
Yamada, M., S. Sakuraba, K. Shibata, G. Taguchi, S. Inatomi, M. Okazaki and M. Shimosaka. 2007. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. FEMS Microbiology Letters 254: 165-172.
Yazawa, M. Y and K. Sugiyama. 2000. Antitumor promoting effect of an active component of Polyporus, ergosterol and related compounds on rat urinary bladder carcinogenesis in a short-term test with concanavalin A. Biological and Pharmaceutical Bulletin 23: 1298-1302.
Yuan, J. P., J. H. Wang, X. Liu, H. C. Kuang and X. N. Huang. 2006. Determination of Ergosterol in Ganoderma Spore Lipid from the Germinating Spores of Ganoderma lucidum by High-Performance Liquid Chromatography.Journal of Agricultural and food chemistry 54: 6172-6176.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28413-
dc.description.abstract樟芝為台灣本土特有之藥用真菌,其所具有的生物活性已被研究並加以證實,但關於樟芝成分的生合成機制仍少有報告。控制羊毛脂醇去甲基酶表現的CYP51基因,在細胞色素P450的超基因家族中是最廣泛分布的一個家族,其跨越了原核生物和真核生物。對真菌而言,羊毛脂醇去甲基酶是麥角固醇生合成路徑中的必要酵素,而麥角固醇則是構成真菌細胞膜主要成分之一。另一方面,許多三萜類的生成都是以羊毛脂醇作為骨架,而這些三萜類化合物可能具有特殊的生物活性或重要的生理功能。在本論文中,我們以樟芝的表現序列基因資料庫中,一段與CYP51同源的cDNA序列片段AcCYP51,利用5'RACE和Genome Walking的方式確定這段序列的cDNA全長,並繼續以Genome walking在AcCYP51五端找到了三個基因。續以PCR的方式找出AcCYP51的基因體全長。其包含了8個exon 和7個intron,共2,045個核苷酸,編碼區的全長為1,635個核苷酸。其所表現出的蛋白質AcCyp51p經過比對可能在N端的前40個胺基酸,具有將此蛋白質送入細胞膜表現的訊號序列。將AcCYP51胺基酸序列和目前已知的CYP51胺基酸序列比對,顯示其和模式木材腐朽菌Phanerochaete chrysosporium具有最高的相似程度。利用半定量RT-PCR實驗結果顯示,相較於實驗室培養的各種菌株生活世代,AcCYP51在野生的子實體有較高的表現量。在培養基中添加羊毛脂醇以及生成羊毛脂醇的前驅物鯊烯,此基因的表現量皆會上升。經過預測啟動子片段,顯示此基因有三個主要可能的修飾片段。分別以熱休克,改變液態培養碳源和氮源,以及外加itroconazole處理液態培養的樟芝,皆會影響此基因的表現量,顯示這些因子和啟動子片段的關係。將AcCYP51建構至蛋白質表現載體 pET 和GST系統顯示,GST系統可以表現相對較多且穩定的可溶性蛋白,供後續的活性分析。利用AcCYP51的重組蛋白進行酵素反應,顯示此蛋白質亦具有催化羊毛脂醇結構上第14個碳的去甲基化的功能。本論文所得之成果,可提供後續之研究,如利用專一抗體針對蛋白質表現來進一步證實其cDNA表現係受啟動子影響;同時,麥角固醇生合成途徑的活化和子實體形成的相互關係亦是未來值得探討的題目。此外,亦可以此蛋白質對樟芝其他特有固醇類進行活性分析,探討其是否具有類似的去甲基反應,產生特殊的萜類化合物。zh_TW
dc.description.abstractAntrodia cinnamomea is a well known edible medicine fungus with various proved benefits of bioactivity compounds for humans in Taiwan. However, reports of biosynthesis of these active compounds are few. Sterol 14α-demethylase (CYP51) is the most widely distributed in all members of the cytochrome P450 superfamily and is one of the key enzymes for sterol biosynthesis in fungi. It is the only CYP family which has been found in both prokaryotes and eukaryotes. In this study, a cytochrome P450 cDNA, AcCyp51, possibly encoding lanosterol 14α-demethylase was obtained and sequenced by using 5' RACE and genome walking with primers designed from the sequences of EST libraries of A. cinnamomea. Full-length AcCyp51 consists of 2,045 bp and contains 7 introns. The coding region of AcCYP51 was 1,635 bp. By genome walking, there were 3 genes discovered from 5' region of AcCyp51. AcCyp51p may have N-terminal signal peptide, which would be transferred to plasma membrane with possibly cleavage site at the 40th amino acid. Comparison of the protein sequence with a number of major Cyp51 homologs revealed that the AcCyp51p was highly conserved, and most closely related to the Cyp51p homologs from Phanerochaete chrysosporium, the model white rot basidiomycetous fungus. The expression of CYP51 in A. cinnamomea is higher in wild type basidiome stages than in artificial culture according to the semiquantative RT-PCR analysis. Three predicted promoter motifs of the AcCYP51 were tested by semiquantative RT-PCR for the regulation of expression by heat shock, carbon and nitrogen sources changing and azole stress. Protein expression in Escherichia coli BL21 showed lower soluble form in pET expression system and higher in GST system. GST constructed protein revealed the capacity for catalyzing the demethylation of lanosterol. Analysis of AcCYP51p protein expression from treated A. cinnamomea strains by using an anti-CYP51p antibody could be the next step to confirm the RT-PCR data. The role that ergosterol biosynthesis played in the formation of fruiting body could be an interesting topic. In addition, whether AcCYP51p demethylates any other lanosterol analogues on 14α-carbon specific in A. cinnamomea is a direction to study.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:07:35Z (GMT). No. of bitstreams: 1
ntu-96-R94625015-1.pdf: 4110751 bytes, checksum: 713c03cd34e290c3723ef907573b8ccf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAbstract in Chinese………………………………………………………….............. I
Abstract...……………………………………………………………........................ III
1. Introduction…..………………………….………………..….…............................. 1
1.1 Antrodia Cinnamomea…………..…….………………...…………………. 1
1.2 Ergosterol biosynthesis………………..…………………………………… 6
1.3 lanosterol 14α-demethylase (CYP51)………………………........................ 9
2. Materials and Methods...…..……………………………………………............... 14
2.1 Experimental fungus strains and media………………..…………………... 14
2.2 RNA and Genomic DNA extraction…….……………………………...….. 14
2.3 Cloning and sequencing....………………….………..…………………….. 15
2.3.1 Cloning full-length cDNA……………………...…………………….. 15
2.3.2 Sequence analyses and alignments……………………...……………. 16
2.4 Promoter assay and semiquantative RT-PCR……………………………… 16
2.5 Subcloning of cDNA, expression in E. coli and enzyme purification…....... 17
2.5.1 Expression in vector pET 20b(+)…………………………………...... 17
2.5.2 Expression in vector pET100/D-TOPO®…………………………….. 18
2.5.3 Expression in vector pGEX4T-1…………………………………........ 18
2.6 Reconstituted protein purification and analysis……………………………. 19
2.6.1 Protein expression and purification…………………………………… 19
2.6.2 Protein assay with SDS-PAGE and Western…………………………... 19
2.7 Reconstituted protein catalytic activity assay……………………………… 20
3. Results and discussions…………………….…………………………………….. 21
3.1 Gene Cloning and Sequence Analysis……………………………………... 21
3.2 RT-PCR of different culture stages………………….……………………. 24
3.3. Genome Walking…………………….…………………………………… 25
3.4 Prediction of promoters…………………….…………………………....... 26
3.5 Protein expression in BL21 and activity assay…………………….………. 28
4. Conclusions…………………….……………………………………………….... 29
5. References…………………….………………………………………………….. 31
6. Tables & Figures………………………………………………………………….. 39
dc.language.isoen
dc.subject羊毛脂醇去甲基&#37238zh_TW
dc.subject樟芝zh_TW
dc.subjectCYP51zh_TW
dc.subjectlanosterol 14α-demethylaseen
dc.subjectCYP51en
dc.subjectAntrodia cinnamomeaen
dc.title樟芝羊毛脂醇去甲基酶基因之選殖及特性分析zh_TW
dc.titleCloning and Characterization of Lanosterol 14α-Demethylase Gene from Antrodia cinnamomeaen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強(Wei-Chiang Shen),王升陽(Song-Yung Wang),顏江河(Chiang-Her Yen),張東柱(Dong-Chou Chang)
dc.subject.keywordCYP51,羊毛脂醇去甲基&#37238,樟芝,zh_TW
dc.subject.keywordCYP51,lanosterol 14α-demethylase,Antrodia cinnamomea,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved