請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28396完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君 | |
| dc.contributor.author | Meng-Chien Lu | en |
| dc.contributor.author | 呂孟謙 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:07:07Z | - |
| dc.date.available | 2015-01-01 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | 1.5 第一章參考文獻
[1]. L. Zhou, A. Wanga, S.C. Wu, J. Sun, S. Park, and T. N. Jackson, ―All-organic active matrix flexible display‖, Applied Physics, Vol.88, p.483- 502, 2006 [2]. Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan, G. Xu, and Z.Popovic, ―Investigation of the sites of dark spots in organic light-emitting devices‖, Appl. Phys. Vol.77, p.26- 50, 2000 [3]. 武東星、賴誠忠、劉嘉翔、張家豪、陳采寧‖ 軟性基材阻氣性鍍膜製程與 透過率量測技術‖ 科儀新知第三十一卷第一期, p.3- 5, 2009 [4]. 張秋萍及黃天恆,‖電漿技術應用於 OLED 阻氣膜介紹‖, 化工資訊與商情 p.53- 58, 2004 [5]. G. Kaltenpoth, W. Siebert, X-M. Xie, F. Stubhan 'The effect of PECVD SiN moisture barrier layers on the degradation of a flip chip underfill material', Soldering & Surface Mount Technology, Vol. 13, p.12 - 15,2001 [6]. 陳良吉, ‖OLED 封裝技術介紹‖, 化工第 51 卷第 2 期,p.20- 25,2004 [7]. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, ―Flexible OLED Displays Using Plastic Substrates‖, IEEE Journal of Selected Topics in Quantumelectronics, Vol.10, p.43-50, 2004 [8]. T. M. Wu, C. W. Wu‖ Surface Characterization and Properties of Plasma-Modified Cyclic Olefin Copolymer/Layered SilicateNanocomposites‖, Wiley InterScience, Vol.2, p.2-7, 2005 [9]. Rui Huang, Hengping Dong, Danqing Wang, Kunji Chen, Honglin Ding, Xiang Wang, Wei Li,Jun Xu, and Zhongyuan Ma‖ Role of barrier layers inelectroluminescence from SiN-based multilayer light-emitting devices‖ Appl. Phys.Vol 92, p.181-186 ,2008 2.4 第二章參考文獻 [1]. M. Schaer, F. Nuesch, D. Berner, W. Leo, and L. Zuppiroli,∥ Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes∥, Adv. Funct. Mater., Vol.11, p.116-120, 2001 [2]. 武東星、賴誠忠、劉嘉翔、張家豪、陳采寧∥ 軟性基材阻氣性鍍膜製程與 透過率量測技術∥ 科儀新知第三十一卷第一期, p.3-5, 2009 [3]. Satoru Iwamori, Yumi Gotoh and Krzysztof Moorthi ─Characterization of silicon oxynitride gas barrier films∥ Vacuum Vol 68, p.113-117, 2002 [4]. Rui Huang, Hengping Dong, Danqing Wang, Kunji Chen, Honglin Ding, Xiang Wang, Wei Li,Jun Xu, and Zhongyuan Ma∥ Role of barrier layers inelectroluminescence from SiN-based multilayer light-emitting devices∥ Appl. Phys.Vol. 92, p.181-186 ,2008 [5]. T. M. Wu, C.W Wu∥ Surface Characterization and Properties of Plasma-Modified Cyclic Olefin Copolymer/Layered SilicateNanocomposites∥, Wiley InterScience, Vol.2, p.2-7, 2005 [6]. 張秋萍及黃天恆,∥電漿技術應用於 OLED 阻氣膜介紹∥, 化工資訊與商情 p.53-58, 2004 [7]. 陳良吉, ∥OLED 封裝技術介紹∥, 化工第 51 卷第 2 期, p.20-25, 2004 [8]. A. Gruniger, A. Bieder, A. Sonnenfeld, Ph. R. Rohr, U.Muller and R. Hauert, ─Influence of film structure and compositionon diffusion barrier performance of SiOx thin films deposited byPECVD∥, Surf. Coat. Technol, Vol.200, p.45-64 ,2006 [9]. D.S. Wuu, W.C. Lo, C.C. Chiang, H.B.Lin, L.S. Chang, R.H.Horng, C.L. Huang and Y.J. Gao, ─Water and oxygen permeationof silicon nitride films prepared by plasma-enhanced chemicalvapor deposition∥, Surf. Coat. Technol., Vol.198, p.114-119,2005 [10].A. Bieder, A. Gruniger and Ph.Rudolf von Rohr∥ Deposition of SiOx diffusion barriers on flexible packaging materials by PECVD” Surface and Coatings Technology∥ Vol.200, p. 928-931, 2005 [11].Satoru Iwamori*, Yumi Gotoh, Krzysztof Moorthi∥ Silicon oxide gas barrier 20 films deposited by reactive sputtering∥ Surface and Coatings Technology Vol.166 ,p. 24–30, 2003 [12].K. Teshima, Y. Inouea, H. Sugimuraa and O. Takaia∥ Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane” Vacuum Vol.66, p. 353-357, 2002 [13].Rui Huang, Hengping Dong, Danqing Wang, Kunji Chen, Honglin Ding, Xiang Wang, Wei Li,Jun Xu, and Zhongyuan Ma∥ Role of barrier layers inelectroluminescence from SiN-based multilayer light-emitting devices∥ Appl. Phys.Vol 92, p.181-186 ,2008 [14].G. Kaltenpoth, W. Siebert, X-M. Xie, F. Stubhan 'The effect of PECVD SiN moisture barrier layers on the degradation of a flip chip underfill material', Soldering & Surface Mount Technology, Vol. 13, p.12 - 15,2001 . [15].A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latreche, and M. R. Wertheimer∥ Defect-permeation correlation for ultrathin transparent barrier coatings on polymers∥ Vacuum, Vol.18, p.149-151 ,2000 [16].A. S. da Silva Sobrinho, J. Chasle, G. Dennler and M. R. Wertheimer ─Characterization of Defects in PECVD-SiO2 Coatings on PET by Confocal Microscopy∥ Plasmas and Polymers, Vol. 3,p 231-247, 2000 [17].Grill, ─Cold Plasma in Materials Fabrication: From Fundamentals to Applications∥, p.1-23. IEEE Press,1994 [18].羅吉宗 ∥薄膜科技與應用∥ 第四章, p.24-26, 2005 [19].白木靖寬 / 吉田貞史。∥薄膜工程學(二版)∥ 第二章,全華科技圖書股份有 限公司, p.66-71, 2006 [20].W. Chang, ─AKT PECVD Process Introduction.∥, p.20-27, 2005 [21].陳克紹, 陳欣蘋,,∥ 超級工程塑膠PEEK 的電漿表面接枝聚合及生醫適應性 改質∥, 行政院國家科學委員會補助專題研究計畫成果報告書, p.17-23,2007 [22].M. Morra, E. Occhiello, and F. Garbassi, ∥ The Effect of Plasma-Deposited 21 Siloxane Coatings on the Barrier Properties of HDPE∥, Journal of Colloid and Interface Science, Vol.7, p.37-45, 1992 [23].A.A. Abdallah a,, K. Lub, C.D. Ovchinnikov b, C.W.T. Bulle-Lieuwma c, P.C.P. Bouten c, G. de Wit,∥ The adhesion of SiNx thin layers on silica–acrylate coated polymer substrates∥, Surface & Coatings Technology Vol.204, p.78–84, 2009 [24].J. Sakata, M. Yamamoto, and I. Tajima, ─Plasma Polymerization of Mixed Monomer Gases∥, Journal of Polymer Science: Part A Polymer Chemistry, Vol. 26,p.1721-1731,1988 [25].Y. Hu,V. Topolkaraev, A. Hiltner, E. Baer1, ─Measurement of Water Vapor Transmission Rate in Highly Permeable Films∥, Journal of Applied Polymer Science, Vol. 81, p.1624–1633,2001 [26].E. A McCullough1, M. Kwon and H. Shim, ─A comparison of standard methods formeasuring water vapour permeability of fabrics∥, Measurement Science and Technology, Vol.14, p.1402–1408, 2003 [27].王應瓊著,儀器分析上冊,中央圖書出版社,p.165-167, 2000 [28].史世華,基質輔助雷射脫附游離—飛行時間質譜技術及其應用,科學新知 p.70-80, 1999 [29].R. Paetzolda and A. Winnacker, D. Henseler, V. Cesari, and K. Heuser, ─Permeation rate measurements by electrical analysis of calcium corrosion∥, American Institute of Physics, Review Of Scientific Instruments Vol.38, p.21-29,September, 2003 [30].J. H. Choi, Y. M. Kim, Y. W. Park, J. W. Huh, and B. K. Jua, I. S. Kim and H.N. Hwang,∥ Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation∥, American Institute of Physics, Review Of Scientific Instruments Vol.78, p. 33-41, 2007 3.3 第三章參考文獻 [1]. 許勝翔‖電漿疏水化表面改質技術應用在彩色濾光片噴墨印刷之研究‖ p.26-34 , 2007 [2]. T. Nicolet corporation ―Introduction to Fourier Transform Infrared Spectrometry‖, manual, p.15-23, 2001 [3]. M. Goujon, T. Belmonte, G. Henrion ―OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma,‖ Surface & Coatings Technology , Vol.188 , p.756–761, 2004 [4]. R Y Honda, R P Mota, R G S Batocki, D C R Santos, T Nicoleti, K G Kostov,M E Kayama, M A Algatti, N C Cruz, L Ruggiero‖ Plasma-polymerized hexamethyldisilazane treated by nitrogenplasma immersion ion implantation technique‖, Journal of Physics: Conference Series, Vol. 167, p.12-55, 2009 [5]. 陳俊龍 ‖AES/ESCA表面分析技術於工業材料上的應用‖ p.10-17, 1995 [6]. 國家實驗研究院儀器科技研究中心‖橢圓偏光儀之原理與應用‖,儀科中心簡 訊 80 期 http://www.itrc.narl.org.tw/Publication/Newsletter/no80/p12.php, 2007 [7]. J. C. Huang ,J.W. Lee ―原子力顯微鏡量測技術研究‖, p.26-33, http://www.me.tnu.edu.tw/~me022/lab/tecofafm.htm [8]. 汪建民‖材料分析(Materials Analysis)‖ 中國材料科學學會, 國防工業出版社, p.122-124, 2006 [9]. 羅聖全, ―電子顯微鏡介紹-SEM,‖ http://www.materialsnet.com.tw, 2004 [10].C. F. Anthony, Introduction to Contact Mechanics, Springer, Berlin, p.201-218, 2000 [11].F. P. Bear, E. R. Johnston, J. T. DeWolf, Mechanics of materials, McGraw-Hill, p.61-67, 2002 36 [12].K. L. Johnson,Contact Mechanics, Cambridge University Press, p.20-25, 1985 [13].C. F. Anthony, Introduction to Contact Mechanics, Springer, Berlin, p.189-199, 2000 [14].W. C. Oliver and G. M. Pharr, ―An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,‖ J. Mater. Res., Vol.7, p.1564-1583, 1992 [15].J. S. Chen, J. G. Duh, ―Indentation behavior and Young’s modulus evaluation in electroless Ni modified CrN coating on mild steel,‖ Surface and Coatings Technology, Vol.139, p.6-13, 2001 4.6 第四章參考文獻 [1]. R Y Honda, R P Mota, R G S Batocki, D C R Santos, T Nicoleti, K G Kostov, M E Kayama, M A Algatti, N C Cruz, L Ruggiero‖Plasma-polymerized hexamethyldisilazane treated by nitrogen plasma immersion ion implantation technique‖ Journal of Physics: Conference Series 167, p.12-55, 2009 [2]. L. Han, P. Mandlik, J. Gartside,S. Wagner, Jeff A. Silvernail,R. Q.Ma,M. Hack, Julie J. Brownb ‖Properties of a Permeation Barrier Material Deposited from Hexamethyl Disiloxane and Oxygen‖ Journal of The Electrochemical Society, Vol.156, p.106-114, 2009 [3]. 國立交通大學綠能光電實驗室‖仿生式抗反射層在太陽電池上之應 用‖http://www.ieo.nctu.edu.tw/gpl/research2-1.php [4]. G. N. Taylor, T. M. Wolf‖ Oxygen plasma removal of thin polymer films‖ Polymer Engineering & Science, Vol. 20, p 1087-1092, 1980 [5]. Q Shang, KS Law ―Deposition chamber cleaning technique using a high power remote excitation source‖ US Patent, Patent number 53073645,1998 [6]. C. Lee , D. B. Graves‖ Global Model of Plasma Chemistry in a High Density Oxygen Discharge‖ J. Electrochem. Soc., Vol. 141, p.1546-1555 , 1994 [7]. 戴慶良‖ 利用共振方法量測薄膜的楊氏係數和蒲松比‖ 中興大學機械 工程學系碩士論文, p.26-33,2009 [8]. 蔡善合‖ 氮化鉻鋁/氮化矽奈米多層薄膜之微結構特性、機械性質與抗 腐蝕行為‖ 國立清華大學材料工程學系碩士論文, p35-42, 2009 5.2 第五章參考文獻 [1]. K. Remashan, Y. S. Choi, S. J. Park, and J. H. Jang ―High Performance MOCVD-Grown ZnO Thin-Film Transistor with a Thin MgZnO Layer at Channel/Gate Insulator Interface‖ Journal of The Electrochemical Society, Vol.157 , p1121-1126 , 2010 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28396 | - |
| dc.description.abstract | 本研究利用低溫電漿輔助化學氣相沉積法開發低溫、可撓有機/無機混成抗水、氧封裝膜。藉由前驅氣體流量及製程參數的調配來調控混成膜之成分與特性,所沉積之薄膜並具良好覆蓋性,可避免水氧側漏。本研究所使用的前驅氣體為六甲基二矽氮烷(hexamethyldisilazane, HMDSZ)以及氧氣(O2)。使用玻璃、PI、以及矽晶圓(Silicon wafer)三種基板,製程溫度為室溫,HMDSZ 單體流量選定10sccm及20sccm 配合O2 流量為0~200sccm,電漿功率則設定在15W~60W 之間。
我們由傅式光譜儀(Fourier transform infrared spectroscopy, FTIR),來觀察混成膜鍵結,發現在1073cm-1 這個波長下的Si-O-Si 鍵結,隨著氧氣流量的升高而增加,代表無機鍵結隨著氧氣分量增加而逐漸增加。並由水接觸角( Contact angle)觀察到HMDSZ 薄膜表面隨著氧氣分量愈來愈多呈現愈來愈親水,亦應證Si-O-Si成分漸增。再透過原子力顯微鏡(atomic force microscopy, AFM) 來量測其薄膜表面粗糙度,發現沒有通入氧氣的HMDSZ 薄膜的粗糙度大約是0.5nm,通入氧氣後則將粗糙度降低到大約0.1nm,透過AFM 的圖也可以發現,表面的微小顆粒在通入氧氣後明顯的數量變為較少。由可見光至近紅外穿透光譜得知,無論有無氧氣通入,混成膜於可見光之平均穿透率都保持在90%左右。接著由奈米壓痕儀(nanoindentator)量測混成膜之機械性質,隨著氧氣流量比例增加,楊氏係數與硬度均隨之上升,代表製程中Si-O-Si 鍵結的生成,使得薄膜的無機性質增加。同時我們在上述的量測皆觀察到,在通入氧氣的製程中,若提升製程電漿功率可達到和增加氧氣流量比例同樣的效果。 最後經由鈣測試法(calcium test) 量測其水氣穿透率(water vapor transmission rate, WVTR)以及氧氣穿透率(oxygen transmission rate, OTR)。我們觀察到,沒有通入氧氣製程的HMDSZ 薄膜,WVTR 約在大於10-3g/m2day,OTR 大約等於0.3cc/m2-day。通入適當比例氧氣流量後明顯讓薄膜阻水氣性質有顯著的提升,不過通入過多氧氣流量卻因μm 等級的微小顆粒產生,使得薄膜阻水氣性有劣化的現象。在調變製程功率的觀察上,我們也發現到同樣的現象。經量測,氧氣及HMDSZ單體流量比例為2.5,製程功率為30W 時,厚度0.5μm 的薄膜之WVTR 降到6.8 10-5 g/m2-day,OTR 降至2.11 10-2 cc/m2-day。當混成膜厚度增加至3μm 時,水氣穿透率為8.4 10-6 g/m2-day,氧氣穿透率為2.64 10-3 cc/m2-day。 | zh_TW |
| dc.description.abstract | Thin film encapsulation technology with excellent permeation barrier property is highly desirable for organic electronic and flexible electronic applications. During the last decade, several organic / inorganic multilayer composite encapsulation technologies have been demonstrated. The inorganic sub-layer serves as the permeation barrier, while the organic sub-layer, typically polymeric material, is used to decouple the inorganic sub-layers and prevent the defect propagation. However, the process for preparing multilayer composite is usually expensive and complicated. In order to reduce the process complexity, a single-layer organic-inorganic hybrid material is pursued to combine the functions of inorganic and organic sub-layers.
The single-layer SiOxNyCz is deposited from a mixture of hexamethyldisilazane (HMDSZ) and oxygen by plasma enhanced chemical vapor deposition (PECVD) at room-temperature. Three types of substrates, including glass, polyimide foil and silicon wafer, are used for property characterization. The effect of oxygen to HMDSZ flow rate ratio is studied. Fourier transform infrared spectra show that the intensity of Si-O-Si absorption band at wavenumber of 1073cm-1 increases as the oxygen flow rate is raised. The contact angle of a droplet of water on the film surface decreases from >80° to 30° when O2/HMDSZ flow rate ratio increases from 0 to 10. Both imply that the addition of oxygen in the source gases can enhance the inorganic content of the resulting film. The surface topography is evaluated by atomic force microscopy. The roughness decreases monotonically (from 0.5 nm to 0.1 nm) with the increase of oxygen flow rate. The mechanical property is then determined by the nanoindentation. We observe a positive correlation between the Young’s modulus and the oxygen flow rate. In addition, we observe that there is a similar trend as we enhance the power of process with the increasing of the O2/HMDSZ flow rate ratio. While several film properties strongly depend on the O2/HMDSZ flow rate ratio and process power, the optical transmittance in the visible light regime remains 90% in all cases. Ca-test is used to evaluate the barrier properties of the hybrid SiOxNyCz layers. Thin film deposited from pure HMDSZ has a water vapor transmission rate (WVTR) of >10-3 g/m2day and oxygen transmission rate(OTR) of 0.3cc/m2-day . The WVTR decreases first and then increases again when oxygen flow rate is raised. The degradation of the barrier property at high O2/HMDSZ flow rate ratio may caused by the formation of particles embedded inside the hybrid film. Similar trend is observed when the deposition power increases. Optimal WVTRs of 6.8´10-5 g/m2-day and 8.489 10-6 g/m2-day, OTRs of 2.11 10-2 cc/m2-day and 2.64 10-3 cc/m2-day, are obtained for a 500nm-thick and an 3000nm-thick SiOxNyCz thin films deposited at the condition of O2/HMDSZ flow rate ratio = 2.5, and process power = 30W. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:07:07Z (GMT). No. of bitstreams: 1 ntu-100-R98941055-1.pdf: 6164669 bytes, checksum: 011fe43fe27a6efa43de02a98fb55d64 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
致謝 Ⅰ 摘要 Ⅱ Abstract Ⅳ 目錄 Ⅵ 圖目錄 Ⅸ 表目錄 VI 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 1 1.3 封裝方法簡介 3 1.3.1 封裝蓋技術 3 1.3.2 薄膜封裝層技術 4 1.4 章節介紹 6 1.5 第一章參考文獻 7 第二章 文獻回顧及封裝測試原理 2.1 薄膜封裝層技術文獻回顧 8 2.2 薄膜沉積方法 11 2.2.1 電漿 11 2.2.2 電漿輔助化學氣相沉積原理 11 2.2.3 前驅氣體 13 2.3 封裝層水氣穿透率測試方法 14 2.3.1 Weight loss 量測法 14 2.3.2 MOCON 量測法 14 2.3.3 質譜(mass spectrometry)量測法 15 2.3.4 鈣測試法(Calcium test) 15 2.4 第二章參考文獻 19 第三章 實驗方法 3.1 封裝膜製程 22 3.1.1 基板清洗 22 3.1.2 鍍膜儀器 22 3.1.3 封裝測試製作架構 24 3.2 量測方法 26 3.2.1 傅式紅外光譜 26 3.2.2 水接觸角 26 3.2.3 化學分析電子儀 27 3.2.4 橢圓偏光儀 27 3.2.5 穿透光譜儀 28 3.2.6 原子力顯微鏡 28 3.2.7 掃描式電子顯微鏡 29 3.2.8 奈米壓痕儀 30 3.3 第三章參考文獻 35 第四章 結果與討論 4.1 薄膜成分及表面性質分析 37 4.1.1 傅式紅外光譜 37 4.1.2 水接觸角 40 4.1.3 化學分析電子儀 44 4.2 光學性質分析 49 4.2.1 折射係數 49 4.2.2 穿透率 52 4.3 表面型態分析 55 4.3.1 原子力顯微鏡 55 4.3.2 掃描式電子顯微鏡 62 4.3.3 光學顯微鏡 63 4.4 材料機械性質分析 69 4.4.1 楊氏係數 69 4.4.2 硬度 71 4.5 水氣氧氣穿透率分析 73 4.5.1 改變氧氣流量比例 73 4.5.2 改變製程功率 76 4.6 第四章參考文獻 79 第五章 結論與未來待續研究 5.1 結論及未來待續研究 80 5.2 第五章參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 六甲基二矽氮烷 | zh_TW |
| dc.subject | 電漿輔助化學氣相沉積儀 | zh_TW |
| dc.subject | 封裝膜 | zh_TW |
| dc.subject | encapsulation layer | en |
| dc.subject | Hexamethyldisilazane | en |
| dc.subject | PECVD | en |
| dc.title | 六甲基二矽氮烷與氧氣製備之封裝膜阻水阻氣特性研究 | zh_TW |
| dc.title | Properties of Permeation Barrier Deposited from Hexamethyldisilazane and Oxygen | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰,吳志毅,陳克紹 | |
| dc.subject.keyword | 六甲基二矽氮烷,封裝膜,電漿輔助化學氣相沉積儀, | zh_TW |
| dc.subject.keyword | Hexamethyldisilazane,encapsulation layer,PECVD, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
