Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫岩章
dc.contributor.authorKin-San Chongen
dc.contributor.author莊健新zh_TW
dc.date.accessioned2021-06-13T00:06:48Z-
dc.date.available2016-08-10
dc.date.copyright2011-08-10
dc.date.issued2011
dc.date.submitted2011-08-05
dc.identifier.citation1. 余軍洪。2010。常見室內植物移除甲醛能力之研究。國立台灣大學園藝學系碩士論文。
2. 呂宜玲。1997。植物對過氧硝酸乙烯酯的吸收及其反應。國立台灣大學植物病蟲害研究所論文。
3. 周明顯。2005。環境臭味及控制。科學發展。第387期38~43。
4. 孫岩章。1984。空氣污染公害之鑑定技術及圖鑑. 行政院衛生署環境保護局編委會。
5. 高銘木、唐俊成。1995。不同生物濾材對氨及硫化氫除臭效率之影響。第十二屆空氣污染控制技術研討會論文集p.652-659。
6. 張瑛蘭。1996。堆肥處理技術概論。經濟部86年度工業污染防治講習會講義43~56。
7. 郭金江。1996。噴霧系統應用於養豬場與堆肥場除臭之研究。國立中興大學生物產業機電工程學系碩士論文。
8. 陳玟妏。2006。高雄市臭味調查及改善。國立中山大學環境工程研究所論文。
9. 陳彥宇。2007。常見室內植物對甲醛及二氧化碳之吸收及反應。國立台灣大學植物病理與微生物學研究所。
10. 楊王婷。2007。常見室內植物對苯之吸收反應。國立台灣大學植物病理與微生物學研究所。
11. 曹慧嫻。2001。常見室內植物對甲醛之吸收及其反應。國立台灣大學植物病理與微生物學研究所。
12. 行政院環境保護著環境保護人員訓練所(環訓所),周明顯修訂, ( 2001 ) , 「臭味及有害空氣污染物控制」,甲級空氣污染防制專責人員。
13. 傅政敏。1992。養豬場堆肥製造與除臭方法的探討。養豬業與環保研討會論文集。台灣省畜產試驗所編印。
14. 揚昇府。以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究。國立中山大學環境工程研究所碩士論文。2002年6月。
15. 賀長富。2001。台北市北投區溫泉業維修作業人員硫化氫暴露之研究。中國文化大學勞工研究所碩士論文。
16. 賀長富。台北市北投區溫泉業維修作業人員硫化氫暴露之研究,中國文化大學勞工研究所碩士論文,臺北;2001。
17. 鄒佳蓉。1999。養豬場除徵技術之研究開發。台灣大學環境工程學研究所碩士論文。
18. 歐新榮。2004。毒性氣體的生成機制與健康危害-硫化氫。勞工安全衛生簡訊第64期。
19. 穆肃。2008。城市空气突发恶臭污染监测与防治——以江苏省海门市恶臭污染事件为例。环境保护 2008(24):3。
20. 蕭庭訓。2005。豬舍臭味改善方法之介紹。行政院農業委員會出版品。農業與農情月刊。第160期。
21. Amiro, B.D., Gillespie, T.J., and Thurtell, G.W.1984. Injury response of Phaseolus vulgaris to ozone flx density. Atmospheric Environment. 18:1207-1215.
22. Amshel C.E., Fealk M.H., Phillips B.J., Caruso D.M. 2000. Anhydrous ammonia burns case report and review of the literature. Burns 26(5)493-497.
23. Aneja, V. P., Blunden, J., James, K., Schlesinger, W. H., Knighton, R., Gilliam, W., Jennings, G., Niyogi, D., and Cole, S. 2008. Ammonia assessment from agriculture: U.S. status and needs. Journal of Environmental Quality 37:515–520.
24. Arwood R., Hammond J., Ward G.G. 1985. Ammonia inhalation. Journal of Trauma 25(5):444-447.
25. Atkinson, C.J., Winner, W.E., and Mooney, H.A. 1988. Gas exchange and sulfur dioxide fumigation studies with irrigated and unirrigated field grown Diplacus aurantiacus and Heteromeles arbutifolia. Oecologia (Berlin). 75:386-393.
26. Bai, Z., Dong, Y., Wang, Z., and Zhu, T. 2006. Emission of ammonia from indoor concrete wall and assessment of human exposure. Environment International 32(3):303-311.
27. Bennett, J.H. and Hill, A.C. 1973. A model for gaseous pollutant sorption by leaves. Journal of the Air Pollution Control Association 23:957-962
28. Black, V.J. and Unsworth, M.H. 1979. Resistance analysis of sulfur dioxide flxes to Vicia faba. Nature. 282:68-69.
29. Blunden, J., Aneja, V. P., and Westerman, P. W. 2008. Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina. Atmospheric Environment 42:3315–3331.
30. Bull, K. R., and Sutton, M. A. 1998. Critical loads and the relevance of ammonia to an effects-based nitrogen protocol. Atmospheric Environment 32:565–572.
31. Campbell, Neil A.; Jane B. Reece 2002. . Biology (6th ed.). San Francisco, California: Pearson Education, Inc. p. 937–938.
32. Chadwick, R. C. 1977. Uptake of H2S and COS by vegetation. A.E.R.E. Harwell report, M2898.
33. Collins, C. D., Bell, J. N. B., and Crews, C. 2000. Benzene accumulation in horticultural crops. Chemosphere 40 (1):109-114.
34. Collins, C., Fryer, M., and Grosso, A. 2006. Plant uptake of non-ionic organic chemicals. Environmental Science & Technology 40 (1):45-52.
35. Cope, D.M. and Spedding, D.J. 1982. Hydrogen sulfide uptake by vegetation. Atmospheric Environment. 16:349-353
36. Cornejo, J. J., Munoz, F. G., Ma, C. Y., and Stewart, A. J. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8 (4):311-320.
37. Cupr, P., Skarek, M., Bartos, T., Ciganek, M., and Holoubek, I. 2005 Assessment of human health risk due to inhalation exposure in cattle and pig farms in south Moravia. Acta Veterinaria Brno 74:305–312.
38. Dale, A. C. 1967. Prairie Farmer Article.Purder University CooperativeExtension Service. (Cited by Yu,1989)
39. Dingle, P., Tapsell, P., and Hu, S. 2000. Reducing formaldehyde exposure in office environments using plants. Archives of Environmental Contamination and Toxicology 64:302-308.
40. Elkiey, T. Ormrod, D.P., and Marie, B. 1982. Foliar sorption of sulfur dioxide, nitrogen dioxide, and ozone by ornamental woody plants. HortScience. 17:358-360
41. Elkiey, T., and Ormrod, D.P. 1980. Sorption of ozone and sulfur dioxide by Petunia leaves. Environmental and Experimental Botany 21:63-70
42. Ferguson, W. S., Koch, W. C., Webster, L. B., and Gould, J. R. 1977. Human physiological response and adaptation to ammonia. Journal of occupational medicine 19(5):319-326.
43. Field, B. 1980. Rural health and safety guild: Beware of on-farm manure storage hazards. Cooperative Extension Service, Purdue University, West Lafayette, IN. S82:1-3.
44. Fuentes, J.D. and Gillespie, T.J. 1992. A gas exchange system to study the effects of leaf surface wetness on the deposition of ozone. Atmospheric Environment. 26.1165-1173
45. Garsed, S.G. and Read, D.J. 1977. The uptake and metabolism of 35SO2 in plants of differing sensitivity to sulfur dioxide. Environmental Pollution 13:173-186
46. Ghaly, A. E. and Bulley, N. R. 1998. Odour reduction measurement and control. CSAE, Ottawa, 5:88-109.
47. Greenwood, Norman N.; Earnshaw, A. 1984. Chemistry of the Elements Oxford: Pergamon, p.485.
48. Hanson, P. J. and Lindberg, S. E. 1991. Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements. Atmosph. Environ. 25A:1615-1634.
49. Hartung, L. D., Hammond, E. G. and Miner., J. R. 1970. Identification of carbonyl compounds in a swine building atmosphere. pp. 105-106 in: Proceedings of the International Symposium on Livestock Wastes. ASAE, St. Joseph, MI.
50. Hill, A.C. (1971). Vegetation: A sink for atmospheric pollutants. Journal of the Air Pollution Control Association. 21:341-346.
51. Hutchinson, G. L., Millington, R. J., Peters, D. B. 1972. Atmospheric ammonia: absorption by plant leaves. Science 175(23):771-772.
52. Jen, M. S., Hoylman, A. M., Edwards, N. T., and Walton, B. T. 1995. Experimental method to measure gaseous uptake of C-14-toluene by foliage. Environmental and Experimental Botany 35 (3):389-398.
53. Kerstirns, G. and L.engzian, K. J. 1989. Interactions between ozone and plant cuticles I. Ozone deposition and permeability. New Phytol. 112:13-19.
54. Keymeulen, R., Schamp, N., and Vanlangenhove, H. 1993. Factors affecting airborne monocyclic aromatic hydrocarbon uptake by plants. Atmospheric Environment Part a, 27 (2):175-180.
55. Kliebenstein, J. 1994. Impact of control on rural economic development. International round table on swing odor control:58-64.
56. Kull, O. and Moldau H. (1994). Absorption of ozone on Betula pendula roth leaf surface. Water, Air, & Soil Pollution 75:79-86.
57. Kurvits, T, and Marta, T. 1998. Agricultural NH3 and NOx emissions in Canada. Environmental Pollution 102(S1):187–194.
58. Leuning, R., Neumann, H. H., and Thurtell, G. W. 1979. Ozone uptake by corn (zea-mays-l) - general-approach. Agricultural Meteorology 20 (2):115-135.
59. Lindgren, T. 2010. A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing. Building and Environment. 45(3):596-600.
60. Appl,. M. (2006). Ammonia, in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
61. Mclaughlin, S.B., and Taylor, G.E. 1981. Relative humidity: Important modifier of pollutant uptake by plants. Science. 211:167-169
62. Merkel, J. A., Hazen, T. E. and Miner, J. R. 1969. Identification of gasesin a confinement swine building atmosphere. Transactions of ASAE 12:310-313.
63. Micromedex: Hydrogen sulfide, 2007
64. Milby T.H., Baselt R.C. 1999. Hydrogen sulfide poisoning: Clarification of some controversial issues. American Journal Of Industrial Medicine 35: 192-195.
65. Milby, T. H., and Baselt, R. C. 1999. Hydrogen sulfide poisoning: Clarification of some controversial issues. American Journal of Industrial Medicine 35:192-195.
66. Moldau, H., Kull, O.,Sober, J., and Norby, R.J. 1991. Differential response of CO2 uptake parameters of soil and sand-grown Phaseolus vulgaris(L.)Plants to absorb ozone flx. Environmental Pollution. 74:251-261
67. Oesterhelweg, L., and Püschel, K. 2008. “Death may come on like a stroke of lightening ...”Phenomenological and morphological aspects of fatalities caused by manure gas. International Journal of Legal Medicine 122:101–107.
68. Olszyk, D. M. and Tingey, O. T. 1985. Interspecific variation in SO2 flux. Plant Physiol. 79:949-956
69. Okano, K. and Totsuka, T. 1986. Absorption of nitrogen dioxide by sunflower plants grown at various levels of nitrate. New Phytologist 102:551-562
70. Oyabu, T., Sawada, A., Onodera, T., Takenaka, K., and Wolverton, B. 2003. Characteristics of potted plants for removing offensive odors. Sensors and Actuators B: Chemical 89(1-2):131-136.
71. Patni N.K., Clarke S.P. 1991. Transient hazardous conditions in animal buildings due to manure gas released during slurry mixing. Applied Engineering in Agriculture 7:478–84.
72. Poda G.A. 1966. Hydrogen sulfide can be handled safely. Archives of Environmental Health 12:795-800.
73. Porter, L.K., Viets, F.G., Jr., and Hutchinson, G.L. 1972. Air containing nitrogen-15 ammonia: Foliar absorption by corn seedling. Science. 175:759-761
74. Powers-Schilling, W.J. 1995. Olfaction: chemical and psychological considerations. Proc. of Nuisance Concerns in Animal Management: Odor and Flies Conference, Gainesville, Florida, March 21-22.
75. Rich, S., Waggoner, P.E., and Tomlinson, H. 1970. Ozone uptake by bean leaves. Science. 169:79-80.
76. Risner, C. H. and Conner, J. M. 1991. Collection of ammonia in indoor air by means of a weak cation exchange cartridge. Environmental Toxicology and Chemistry 10(11):1417-1423.
77. Russell, A.G., McRae, G.J., and Cass, G.R. 1985. The dynamics of nitric acid production and the fate of nitrogen oxides. New Phytologist 103:199-206
78. S. López-Aparicio, Smolík J., Mašková L., Součková M., Grøntoft T., Ondráčková L. and Stankiewicz J. 2011. Relationship of indoor and outdoor air pollutants in a naturally ventilated historical building envelope. Buliding and Environment 46(7): 1460-1468.
79. Spedding, D.J. 1969. Uptake of sulphur dioxide by barley leaves at low sulphur dioxide concentrations. Nature. 224:1229-1230
80. Srivastana, H.S., Jolliffe, P.A. and Runeckles, V.C. 1975. Inhibition of gas exchange in bean leaves by NO2. Canadian Journal of Botany. 53:466-474
81. Sun, E.J. 1990. Sorption of three major air pollutants by bean plants. Journal of the Environmental protection society of the Republic of China. 13(1):39-50
82. Sun, E.J. and Su, H.J. 1985. Fluoride injury to rice plants caused by air pollution emitted from ceramic and brick factories. Environmental Pollution. (A)37: 335-342
83. Taiganides, E. P., and White, R. K. 1969. The menace of noxious gases in animal units. Transactions of ASAE 12:359–362.
84. Tayler, G.E. and Tingey, D.T. 1983. Sulfur dioxide flx into leaves of Geranium carolinianum L. Plant Physiology. 72:237-244
85. Thomas, M.D. and Hill, G.R. 1935. Absorption of sulphur dioxide by alfalfa and leaf injury. Plant Physiology. 10:291-307
86. Tomoto, T., Moriyoshi, A., Sakai, K., Shibata, E., and Kamijima, M. 2009. Identification of the sources of organic compounds that decalcify cement concrete and generate alcohols and ammonia gases. Building and Environment 44:2000–2005.
87. Ugrekhelidze, D; Korte, F; Kvesitadze, G 1997. Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicology and Environmental Safety 37(1):24-29
88. Unsworth, M.H., Heagle, A.S., and Heck,W.W. 1984. Gas exchange in open-top field chambers-II. Resistance to ozone uptake by soybeans. Atmospheric Environment. 18:381-385
89. Van Hove, L. W. A., Koops, A. J., Adema, E. H., Vredenberg, W. J., and Pieters, G. A. 1987. Analysis of the uptake of atmospheric ammonia by leaves of Phaseolus vulgaris L. Atmospheric Environment. 21:1759-1763.
90. Van Hove, L.W.A., Adema, E.H., Vredenberg, W.J.,and Pieters,G.A. 1989. A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmospheric Environment. 23:1479-1486
91. Webb, J., Menzi, H., Pain, B. F., Misselbrook, T. H., DÃĪmmgen, U., Hendriks, H., and DÃķhler, H. 2005. Managing ammonia emissions from livestock production in Europe. Environmental Pollution 135:399–406.
92. Whitehead, D. C., and Lockyer, D. R. 1987. The influence of the concentration of gaseous ammonia on its uptake by the leaves of italian ryegrass, with and without an adequate supply of nitrogen to the roots. Journal of Experimental Botany 38(5):818-827.
93. Wolverton, B. C., and Wolverton, J. D. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. Journal of the Mississippi Academy of Science 38(2):11-15.
94. Wood, R. A., Orwell, R. L., Tarran, J., Torpy, F., and Burchett, M. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. Journal of Horticultural Science & Biotechnology 77 (1): 120-129.
95. Woodall, G. M., Smith, R. L., and Granville, G. C. 2005. Proceedings of the hydrogen sulfide research and risk assessment symposium, October 31-November 2, 2000. Inhalation Toxicology 17:593-639.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28385-
dc.description.abstract空氣中惡臭物質主要如硫化氫、氨氣、有機硫類、有機胺類,多具有刺激性,使人感到不適。本研究以氨氣及硫化氫兩種惡臭氣體為研究對象,期望篩選出對不同惡臭氣體吸收能力較佳的常見樹木,以供推廣及利用。本研究選用了二十種常見行道樹,利用小型枝葉圍封箱系統,測試不同樹種對氨氣及硫化氫惡臭氣體吸收能力之差異,並以沈降速度表示之。研究結果顯示,20種常見樹種,以苦楝、檸檬桉、檉柳、白千層及黃槿等五種,對於氨氣的吸收效率最好。同於測試20種植物,其中吸收硫化氫效率較佳的樹種為白千層、黃槿、檸檬桉、苦楝及小葉南洋衫等五種。上述各五種淨污力較高者中有四種是重複的,故值得在田間推廣應用以同時吸收氨氣及硫化氫兩大惡臭物質。本研究另測試四種室內植物吸收氨氣及硫化氫惡臭氣體之能力,結果發現,以山蘇吸收氨氣效果最佳,而對硫化氫之吸收則以蔓綠絨為最佳。在弱光(500 lx)與強光(5000 lx),另比較此些室內植物在上午、下午與晚間吸收氨氣及硫化氫能力之差異。發現在強光下室內植物吸收氨氣及硫化氫的能力,不分上午、下午及晚間,皆比弱光下為高,但因生理時鐘之因素,植物淨化氨氣及硫化氫的效率,會由上午、下午至晚間而逐漸下降。zh_TW
dc.description.abstractHydrogen sulfide, ammonia, organic sulfur, and organic amines are major odor pollutants. They are offensive and uncomfortable for people. In this study, both ammonia and hydrogen sulfide were selected and tested for measuring the pollutant uptake rates by common tree species and future application in the field. A small fumigation chamber was designed for measuring the uptake rate of ammonia and hydrogen sulfide by 20 species of common trees. Results showed that among then Melia azedarach, Eucalyptus citriodora, Tamarix juniperina, Melaleuca leucadendra and Hibiscus tiliaceus have higher for ammonia. To uptake the hydrogen sulfide, however, Melaleuca leucadendra, Hibiscus tiliaceu, Eucalyptus citriodora, Melia azedarach and Araucaria excels showed the higher uptake rate. Four species can be found in both lists and are worthy for planting in the field to remove both ammonia and hydrogen sulfide simultaneously. The pollutant uptake measurement for four indoor plants showed that Asplenium antiquum do the best for ammonia, while the highest uptake of hydrogen sulfide is by Ficus pumilal. To compare the effects of light intensity and biological clock on pollutant uptake by plants, we measured the uptake rate of ammonia and hydrogen sulfide under low or high light either in the morning, afternoon, or evening. Results indicated that the uptake rate of ammonia and hydrogen sulfide were increased significantly in high light intensities (5000 lx) than in low light intensity (500 lx), whenever in the morning, afternoon and evening. Because of circadian rhythm, or so called biological clock, the uptake rates of ammonia and hydrogen sulfide by plants usually decreased from in the morning, to a less in the afternoon, and the least in the nighttime.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:06:48Z (GMT). No. of bitstreams: 1
ntu-100-R98633022-1.pdf: 1171800 bytes, checksum: 4908c72059c456796bfa15dc9ddae0fa (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書............................................................................................................I
誌謝...................................................................................................................................II
中文摘要.........................................................................................................................III
英文摘要.........................................................................................................................IV
第一章 前言...............................................................................................................1
第二章 前人研究.......................................................................................................3
一、 惡臭污染背景...................................................................................................3
二、 氨的特性及污染來源.......................................................................................4
三、 氨對人體之影響...............................................................................................5
四、 硫化氫的特性及污染來源...............................................................................6
五、 硫化氫對人體影響...........................................................................................7
六、 利用植物淨化異味空氣污染...........................................................................8
七、 植物吸收污染氣體之機制.............................................................................10
第三章 材料與方法.................................................................................................12
一、 常見植物對氨氣之吸收測試.........................................................................12
(一) 二十種常見樹木對氨氣之吸收.............................................................12
1. 供試植物............................................................................................12
2. 供試植物之栽培、馴化與管理.........................................................21
3. 熏氣系統之設計................................................................................21
4. 測試流程及計算................................................................................22
(二) 四種室內植物對氨氣之吸收.................................................................24
1. 供試植物............................................................................................24
2. 供試植物之栽培、馴化與管理.........................................................25
3. 熏氣系統之設計................................................................................25
4. 測試流程及計算................................................................................26
二、 常見植物對硫化氫之吸收測試.....................................................................26
(一) 二十種常見樹木對硫化氫之吸收.........................................................26
1. 供試植物............................................................................................26
2. 供試植物之栽培、馴化與管理........................................................26
3. 熏氣系統之設計................................................................................26
4. 測試流程及計算................................................................................27
(二) 四種室內植物對硫化氫之吸收.............................................................27
1. 供試植物............................................................................................27
2. 供試植物之栽培、馴化與管理........................................................27
3. 熏氣系統之設計................................................................................28
4. 測試流程及計算................................................................................28
三、 不同光度對植物吸收氨氣之影響.................................................................28
四、 不同光度對植物吸收硫化氫之影響.............................................................29
五、 植物吸收氨氣之晝夜變化.............................................................................29
六、 植物吸收硫化氫之晝夜變化.........................................................................29
第四章 結果.............................................................................................................33
一、 常見植物對氨氣之吸收測試.........................................................................33
(一) 二十種常見樹木對氨氣之吸收.............................................................33
(二) 四種室內植物對氨氣之吸收.................................................................33
二、 常見植物對硫化氫之吸收測試.....................................................................42
(一) 二十種常見樹木對硫化氫之吸收.......................................................42
(二) 四種室內植物對硫化氫之吸收...........................................................42
三、 不同光度對植物吸收氨氣之影響.................................................................50
四、 不同光度對植物吸收硫化氫之影響.............................................................55
五、 植物吸收氨氣之晝夜變化.............................................................................60
六、 植物吸收硫化氫之晝夜變化.........................................................................63
第五章 討論.............................................................................................................66
一、 常見植物對氨氣之吸收測試.........................................................................66
(一) 二十種常見樹木對氨氣之吸收.............................................................66
(二) 四種室內植物對氨氣之吸收.................................................................66
二、 常見植物對硫化氫之吸收測試.....................................................................67
(一) 二十種常見樹木對硫化氫之吸收.......................................................67
(二) 四種室內植物對硫化氫之吸收...........................................................67
三、 不同光度對植物吸收氨氣之影響.................................................................68
四、 不同光度對植物吸收硫化氫之影響.............................................................68
五、 植物吸收氨氣之晝夜變化.............................................................................69
六、 植物吸收硫化氫之晝夜變化.........................................................................69
七、 利用植物淨化惡臭污染物之策略.................................................................69
參考文獻.........................................................................................................................71
dc.language.isozh-TW
dc.subject氨氣zh_TW
dc.subject植物淨污zh_TW
dc.subject沈降速度zh_TW
dc.subject臭味zh_TW
dc.subject硫化氫zh_TW
dc.subjectdeposition velocityen
dc.subjecthydrogen sulfideen
dc.subjectodor pollutanten
dc.subjectammoniaen
dc.subjectphytoremediation.en
dc.title常見樹木淨化氨及硫化氫惡臭污染能力之研究zh_TW
dc.titleStudy on Role of Common Trees for Absorbing the Odor Pollutions Ammonia and Hydrogen Sulfideen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王亞男,張育森,鄭福田
dc.subject.keyword氨氣,硫化氫,臭味,沈降速度,植物淨污,zh_TW
dc.subject.keywordodor pollutant,ammonia,hydrogen sulfide,deposition velocity,phytoremediation.,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2011-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved