請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28370
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Pai-Li Lin | en |
dc.contributor.author | 林百勵 | zh_TW |
dc.date.accessioned | 2021-06-13T00:06:20Z | - |
dc.date.available | 2007-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-30 | |
dc.identifier.citation | 參考文獻
[1] A. Moesr, et al., J. Phys. D: Appl. Phys. 35, R157 (2002) [2] http://www.magneticdiskheritagecenter.org/ .(2006) [3] http://en.wikipedia.org/wiki/IBM_305 (2007) [4] http://www.seagate.com/www/en-us/ (2006) [5] http://www.hitachigst.com [6] B. D. Cullity, “ Introduction to Magnetic Materials ”, Massachusetts: Addison-Wesley, 1972 [7] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998) [8] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997) [9] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999) [10] H. N. Bertram, and M. Williams, IEEE Trans. Magn. 36 (2000) [11] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000) [12] M. S. Patwari, and R. H. Vistoria, IEEE Trans. Magn. 40, 247 (2004) [13] S. Batra, J. D. Hannay H. Zhou, and J. S. Goldberg, ibid 40, 319 (2004) [14] J. Li, M. Mirzamaani, X. Bian, M. Doerner, S. Duan, K. Tang, M. Toney, T. Arnoldussen, and M. Madison, J. Appl. Phys, 86, 4286 (1999) [15] 楊志信,台灣資訊儲存技術協會會刊,940403,1 (2005) [16] H. J. Richter, J. Magn. Magn. Mater. 287, 41 (2005) [17] 曾厚朗及盧志權,磁性技術協會會訊,第25期,9 (2000) [18] S. Khizrroev and D. Litvinov, J. Appl. Phys. 95, 4521 (2004) [19] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977) [20] J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003) [21] M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005) [22] D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000) [23] D. Weller and M. F. Doerner, Annu. Rev. Mater. Res. 30, 611 (2000) [24] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004) [25] J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett. 90, 042508 (2007) [26] C. C. Chiang, Chih-Huang Lai, and Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006) [27] C. Kittel, Phys. Rev. 70, 965 (1946) [28] R. A. MaCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966) [29] Y. Iijima, O. Taguchi, and K. Hirano, Trans. Japan Inst. Met 21, 366 (1980) [30] 林宥朋,”碩士論文:銅添加對鈷鉑薄膜序化與磁特性之影響”,私立逢甲大學 (2002) [31] J. A. Christodoulides and P. Farber. IEEE. Trans. Magn. 37, 1292 (2001) [32] 郭志明,”博士論文:Co100-xTbx與Fe100-xPtx與(FePt)-(Si3N4)薄膜之磁性及微結構研究”,國立台灣大學(1999) [33] J. Orehotsky and J. L. Orehotsky, J. Appl. Phys. 61, 1210 (1987) [34] K. Barmak, R. A. Ristau, K. R. Coffey, M. A. Parker, and J. K. Howard, J. Appl. Phys. 79, 5330 (1996) [35] K. Barmak, J. Kim, and S. Shell, Appl. Phys. Lett. 80, 4268 (2002) [36] D. Y. Oh and J. K. Park, J. Appl. Phys. 97, 10N105 (2005) [37] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater. 303, e246-e246 (2006) [38] H. Yamaguchi, O. Kitakami, S. Okamoto, Y. Shimada, K. Oikawa, and K. Fukamichi, Appl. Phys. Lett. 79, 2001 (2001) [39] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001) [40] L. Castaldi, K. Giannakopoulos, A. Travlos, D. Niarchos, S. Boukari, and E. Beaurepaire, J. Magn. Magn. Mater. 290-291, 544 (2005) [41] R. K. Rakshit, S. K. Bose, R. Sharma, and R. C. Budhani, Appl. Phys. Lett. 89 202511 (2006) [42] E. Manios, V. Karanasos, D. Niarchos, I. Panagiotopoulos, J. Magn. Magn. Mater. 272-276, 2169 (2004) [43] X.-H Xu, Z.-G. Yang, and H.-S. Wu, J. Magn. Magn. Mater. 295, 106 (2005) [44] H. Wang, S. X. Xue, F. J. Yang, H. B. Wang, X. Cao, J. A. Wang, Y. Gao, Z. B. Huang, C. P. Yang, W. Y. Cheung, S. P. Wong, Q. Li, and Z. Li, Thin Solid Films, 505, 77 (2006) [45] T. Yokota, L. Gao, S. H. Liou, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 95, 7270 (2004) [46] T. Yokota, L. Gao, R. Zhang, L. Nicholl, M. L. Yan, D. J. Sellmyer, and S. H. Liou, J. Magn. Magn. Mater. 286, 301 (2005) [47] K. Yamaguchi, Z. Zhao, C. Chen, M. Hashimoto, J. Shi, and Y. Nakamura, Thin Solid Films 459, 165 (2004) [48] S. Jeong, T.-N. Hsu, D. E. Laughlin, and M .E. Mahenry, IEEE Trans. Magn. 36, 2336 (2000) [49] S. Jeong, T.-N. Hsu, M .E. Mchenry, and D. E. Laughlin, J. Appl. Phys. 87, 6950 (2000) [50] P. D. Kim, I. A. Turpanov, S. V. Stolyar, R. S. Iskhakov, V. I. Yushkov, A. Y. Beten`kova, L. A. Li, E. V. Bondareva, T. N. Isaeva, and M. M. Karpenko, Technical Physics 49, 431 (2004) [51] J.-J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, and S. Umemura, Appl. Phys. Lett. 71, 3427 (1997) [52] V. Karanasos, I. Panagiotopoulos, and D. Niarchos, J. Magn. Magn. Mater. 249, 471 (2002) [53] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, Y. D. Yao, J. Appl. Phys. 85, 4334 (1999) [54] C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000) [55] C. J. Lin et and G. Gorman, Appl. Phys. Lett. 61, 1600 (1992) [56] http://nems.ntu.edu.tw/web_nems/document/general/NMC-W-8009_WEB.pdf [57] 陳力俊等,“材料電子顯微鏡學”,國科會精儀中心發行(1994) [58] D. B. Williams and C. B. Carter, “Transmission electron microscopy: a textbook for materials science”, Plenum Press (1996) [59] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, p. 170, 3rd edition, Prentice Hall (2001) [60] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, and Y. D. Yao, J. Appl. Phys. 85, 4334 (1999) [61] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, S. N. Hsiao, and W. C. Chang, J. Magn. Magn. Mater. 304, e255 (2006) [62] S. -E. Park, P. -Y. Jung, and K. -B. Kim, J. Appl. Phys. 77, 2641 (1995) [63] S. Nakagawa and Taro Kamiki, J. Magn. Magn. Mater. 287, 204 (2005) [64] J. Z. Jiang, F. Kragh, D. J. Frost, K. Ståhl, and H. Lindelov, J. Phys.: Condens. Matter 13, L515-L520 (2001) [65] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28370 | - |
dc.description.abstract | 本研究以直流磁控濺鍍的方式於室溫鍍製Co50Pt50薄膜,搭配MgO、Ag底層及SiNx頂層,以形成Co50Pt50/MgO、Co50Pt50/Ag、SiNx/ Co50Pt50/Ag及(Co50Pt50)1-x(SiNx)x/Ag多層膜結構,探討MgO、Ag底層、SiNx頂層及製程參數對Co50Pt50薄膜之顯微結構、磁性質及其易磁化軸方向的影響。
關於MgO底層的製作,調整製程參數後發現Ar流量20 sccm、載台轉速0 rpm、Ar壓力5 mTorr、濺鍍功率150 w、厚度為360 nm的MgO薄膜具有最好的(200)結晶指向。對於CoPt (20 nm)/ MgO (360 nm)薄膜來說,在熱處理後,由於CoPt與MgO之間的介面粗糙以及CoPt原子會往MgO底層擴散,造成MgO (200)對CoPt薄膜的磊晶效果有限,無法藉由磊晶讓CoPt的易磁化軸垂直膜面。 在CoPt/Ag薄膜方面,Ag底層引入後有降低CoPt序化溫度的效果,序化溫度從單層CoPt的650°C降至500∼550°C,並且Ag底層有促進CoPt薄膜垂直膜面磁性質的效果。CoPt (20 nm)/ Ag (25 nm)於650°C退火30分鐘之後,具有最好的垂直磁性質,其Hc⊥值為13000 Oe、Hc∥值為12300 Oe、Ms值為420 emu/cm3、S⊥值為0.90、S∥值為0.38。 將32 nm的SiNx頂層鍍製到CoPt/Ag薄膜之上,經過650°C退火30分鐘後,CoPt (20 nm)/ Ag (25 nm)的 I001 / I111比值從未加SiNx頂層的13.05降到加上SiNx頂層之後的1.54,其Hc⊥值為11600 Oe、Hc∥值為9900 Oe、Ms值為520 emu/cm3、S⊥值為0.88、S∥值為0.41;SiNx頂層會抑制CoPt (001)指向並提升CoPt (111)指向,然而在高溫退火之後,SiNx頂層具保護CoPt薄膜減少氧化的效果,讓Ms值從420 emu/cm3提升到520 emu/cm3。 利用(Co50Pt50)1-y(SiNx)y (20 nm)/Ag (25 nm)薄膜來製作顆粒狀結構,經過650°C及700°C退火30分鐘後,發現添加SiNx到CoPt薄膜會嚴重地限制CoPt/Ag薄膜的垂直膜面磁異向性,陶瓷SiNx具有抑制CoPt (001)優選方位的效果;當SiNx=4.3 vol%時,從TEM能觀察到薄膜具有部分的顆粒狀結構,但顆粒的大小及分佈都不均勻,當SiNx=50 vol%時,顆粒的大小及分佈較均勻,然而此時CoPt的易磁化軸並非垂直,而是趨向於random。 | zh_TW |
dc.description.abstract | Co50Pt50 films were deposited at room temperature by dc magnetron sputtering, and were combined with MgO underlayer, Ag underlayer, and SiNx capped layer to form Co50Pt50/MgO, Co50Pt50/Ag, SiNx/Co50Pt50/Ag, and (Co50Pt50)1-x(SiNx)x/Ag multilayer films on glass substrates. The effects of MgO underlayer, Ag underlayer, SiNx capped layer, and process parameters on the microstructure, magnetic properties, and magnetic easy axis of the film were investigated.
For the fabrication of MgO underlayer with MgO(200) preferred orientation, the process parameters are 20 sccm Ar flow rate, 5 mTorr Ar pressure, 150 w rf power, and 360 nm film thickness. For the CoPt (20 nm)/ MgO (360 nm) films, the the effect of MgO(200) underlayer on the epitaxial growth of CoPt layer is not obvious due to the rough interface between CoPt and MgO and the diffusion of Co and Pt atoms into MgO underlayer during heat treatment. It can not make the magnetic easy axis of CoPt perpendicular to the film plane. For the CoPt/Ag films, the introduction of Ag underlayer could lower the ordering temperature of CoPt film. The ordering temperature decreases from 650°C of single-layered CoPt to 500~550°C and Ag underlayer has the effect of promoting out-of-plane magnetic properties of CoPt films. After annealing at 650°C for 30 minutes, the CoPt (20nm)/ Ag (25 nm) film shows best out-of-plane magnetic properties and its Hc⊥ value = 13000 Oe, Hc∥ value = 12300 Oe, Ms value = 420 emu/cm3, S⊥ = 0.9, and S∥ value= 0.38. A 32 nm SiNx capped layer was deposited on the top of CoPt/Ag film then annealed at 650°C for 30 minutes. The I001 /I111 ratio of CoPt (20 nm)/ Ag (25 nm) film decreases from 13.05 without SiNx capped layer to 1.54 with SiNx capped layer. Its Hc⊥ value = 11600 Oe, Hc∥ value = 9900 Oe, Ms value = 520 emu/cm3, S⊥ = 0.88, and S∥ value= 0.41. It was found that SiNx capped layer would inhibit CoPt(001) orientation growth and promote CoPt(111) preferred orientation. After annealing at high temperature, SiNx capped layer could reduce the oxidation of CoPt film, and the Ms value of the film was enhanced from 420 emu/cm3 to 520 emu/cm3. After annealing at 650°C and 700°C for 30 minutes, it is found that SiNx will limit the out-of-plane magnetic anisotropy of (Co50Pt50)1-y(SiNx)y (20 nm)/Ag (25 nm) granular films. SiNx would inhibit CoPt(001) preferred orientation. From the observation of TEM, when SiNx = 4.3 vol%, partial granular structure is observed, but the particle size and distribution are not uniform. When SiNx = 50 vol%, the uniformity of particle size and distribution is better, however, the magnetic easy axis is random and not perpendicular to the film plane. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:06:20Z (GMT). No. of bitstreams: 1 ntu-96-R94527027-1.pdf: 4825599 bytes, checksum: 9329ed7878a4e625dd584f8f4f428e36 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………I
誌謝…………………………………………………………………….II 摘要…………………………………………………………………….IV Abstract…………………………………………………………………V 目錄……………………………………………………………………VII 圖目錄……………………………………………………………………X 表目錄………………………………………………………………..XVI 第一章、前言……………………………………………………………1 第二章、基礎理論與文獻回顧…………………………………………3 2-1 基礎理論……………………………………………………………3 2-1-1 基本磁記錄原理…………………………………………………3 2-1-2 水平磁記錄的極限………………………………………………4 2-1-3 垂直磁記錄………………………………………………………4 2-1-4 顆粒尺寸與矯頑磁力的關係……………………………………5 2-1-5 磁記錄材料………………………………………………………5 2-1-6 CoPt序化度的計算………………………………………………6 2-1-7 顆粒狀磁性薄膜作為磁記錄媒體的優點………………………7 2-2 文獻回顧……………………………………………………………7 2-2-1 CoPt薄膜............................................7 2-2-2 顆粒狀磁性薄膜.....................................11 2-3 研究方向………………………………………………………….12 第三章、實驗方法…………………………………………………….18 3-1 實驗流程………………………………………………………….18 3-2 靶材選取………………………………………………………….19 3-2-1 陶瓷靶材……………………………………………………….19 3-2-2 金屬靶材……………………………………………………….19 3-3基板選取與基板清洗………………………………………………19 3-3-1 基板選取……………………….………………………………19 3-3-2 基板清洗……………………………………………………….19 3-4 實驗裝置及薄膜製備…………………………………………….20 3-4-1 實驗裝置……………………………………………………….20 3-4-2 薄膜濺鍍……………………………………………………….20 3-4-3 退火步驟……………………………………………………….21 3-5 磁性質分析……………………………………………………….22 3-6 化學組成分析…………………………………………………….22 3-6-1 EDS成份分析……………………………………………………22 3-6-2 AES元素縱深分佈………………………………………………22 3-7 AFM厚度及表面形貌分析…………………………………………23 3-8 微結構分析……………………………………………………….23 3-8-1 X光繞射分析……………………………………………………23 3-8-2 TEM微結構觀察…………………………………………………24 第四章、實驗結果與討論…………………………………………….34 4-1 MgO及Ag底層之製備………………………………………………34 4-1-1 MgO底層的製作…………………………………………………34 4-1-2 MgO薄膜的微結構觀察…………………………………………36 4-1-3 Ag底層的製作………………………………………………….38 4-1-4 Ag薄膜的微結構觀察………………………………………….39 4-2 單層CoPt合金薄膜製作………………………………………….40 4-2-1 CoPt薄膜厚度對微結構的影響…………………………….…40 4-2-2單層CoPt薄膜的磁性質分析……………………………….….41 4-2-3單層CoPt薄膜的TEM微結構分析………………………….……42 4-3 MgO底層對CoPt合金薄膜的影響…………………………………43 4-3-1 MgO底層對CoPt合金薄膜微結構的影響………………………43 4-3-2 MgO底層對CoPt合金薄膜磁性質的影響………………………44 4-3-3 CoPt/MgO合金薄膜的TEM微結構觀察…………………………44 4-4 Ag底層對CoPt合金薄膜的影響………………………………….45 4-4-1 Ag底層對CoPt合金薄膜微結構的影響….……………………45 4-4-2 Ag底層對CoPt合金薄膜磁性質的影響….……………………46 4-4-3 CoPt/Ag合金薄膜的TEM微結構觀察………………………….47 4-4-4 SiNx頂層對CoPt/Ag合金薄膜微結構的影響…….………….47 4-4-5 SiNx頂層對CoPt/Ag合金薄膜磁性質的影響……….……….49 4-5 (CoPt)1-y(SiNx)y/Ag顆粒狀薄膜的製作………………………50 4-5-1 SiNx的體積分率對薄膜微結構及磁性質的影響…………….50 4-5-2不同SiNx體積分率的(CoPt)1-y(SiNx)y/Ag顆粒狀薄膜TEM分析.......................................................52 第五章、結論………………………………………………………….99 參考文獻………………………………………………………………100 | |
dc.language.iso | zh-TW | |
dc.title | CoPt及(CoPt)1-y(SiNx)y薄膜的製作與磁性質研究 | zh_TW |
dc.title | Fabrication and magnetic properties of CoPt and (CoPt)1-y(SiNx)y thin films | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張慶瑞,許仁華,姚永德 | |
dc.subject.keyword | CoPt,(CoPt)1-y(SiNx)y,顆粒狀, | zh_TW |
dc.subject.keyword | CoPt,(CoPt)1-y(SiNx)y,granular, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。