Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允立
dc.contributor.authorYi-Ru Huangen
dc.contributor.author黃逸儒zh_TW
dc.date.accessioned2021-06-13T00:06:03Z-
dc.date.available2009-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-29
dc.identifier.citation[1] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahamam,
“High-brightness InGaN blue, green and yellow light-
emitting diodes with quantum well structures”, Jpn.
J. Appl. Phys. 34, L797 (1995)
[2] 史光國, “GaN藍色發光及雷射二極體之發展現況”,工業材
料, 126, p.154 (1997)
[3] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on
the electrical and luminescent properties of reactive
molecular beam epitaxially grown GaN films by using
AlN-coated sapphire substrates”, Appl. Phys. Lett. 42
427 (1983)
[4] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota,
“Metalorganic vapor phase epitaxial growth of a high
quality GaN film using an AlN buffer layer”, Appl.
Phys. Lett. 48, 353 (1986)
[5] H. Amano, M. Kito, K. Hiranatsu, and I. Akasaki, “P-
type conduction in Mg-doped GaN treated with low-
energy electron beam irradiation (LEEBI)”, Jpn. J.
Appl. Phys., Part2 28, L2112 (1989).
[6] S. Nakamura, “GaN growth using GaN buffer layer”,
Jpn. J. Appl. Phys. 30, L1705 (1991)
[7] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama,
“High-brightness InGaN blue, green and yellow light-
emitting diodes with quantum well structures”, Jpn.
J. Appl. Phys. Lett. 34, L797-9, (1995)
[8] Jong Kyu Kim, Thomas Gessmann, E. Fred Schubert, J.-Q.
Xi Hong Luo, Jaehee Cho, Cheolsoo Sone, and Yongjo
Park, “GaInN light-emitting diode with
conductive omnidirectional reflector having a low-
refractive-index indium-tin oxide layer”, Appl. Phys.
Lett. 88, 013501 (2006)
[9] Y.-L. Li, E. F. Schubert, J. W. Graff, “Low-
resistance ohmic contacts to p-type GaN”, Appl. Phys.
Lett. 76, 2728 (2000)
[10] Min-Ki Kwon, Il-Kyu Park, Sung-Ho Beak, Ja-Yeon Kim,
and Seong-Ju Park, “ Improvement of
photoluminescence by Si delta-doping in GaN barrier
layer of GaN/InxGa1-xN multi-quantum wells”, phys.
stat. sol. (a) 202, 859-862 (2005)
[11] S. Chichibu, D. A. Cohen, M. P. Mack, A. C. Abare, P.
Kozodoy, M. Minsky, S. Fleischer, S. Keller, J. E.
Bowers, U. K. Mishra, L. A. Coldren, D. R. Clarke,
and S. P. DenBaars, “ Effects of Si-doping in the
barriers of InGaN multiquantum well purplish-blue
laser diodes”, Appl. Phys, Lett. 73, p. 496 (1998)
[12] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F.
Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K.
Sheu, “Influence of Si-doping on the characteristics
of InGaN-GaN multiple quantum-well blue light
emitting diodes“, IEEE J. Quan. Elec., 38, 5,
p.446 (2002)
[13] B. G. Streetman, 'Solid State Electronic Devices',
3rd Ed., Prentice-Hall International, (1990)
[14] B. Gil, “Group Ⅲ Nitride Semiconductor Compounds”,
Oxford, New York (1998)
[15] H. Morkoc, “Nitride Semiconductors and Devices”,
Springer-Verlag, berlin (1999)
[16] S.C. Jain, M. Willander, J. Narayan, and R.Van
Overstraeten,” III–nitrides: Growth,
characterization, and properties”, J. Appl. Phys.
87, 965 (1999)
[17] M. G. Cheong, C. Liu, H. W. Choi, B. K. Lee, E. K.
Suh, and H. J. Lee, ” Study of the origin of
luminescence in high indium composition InGaN/GaN
quantum wells”, J. Appl. Phys. 93, 4691 (2003)
[18] M. K. Behbehani, E. L. Piner, S. X. Liu, N. A. EI-
Masry, and s. M. Bedair, “Phase separation and
ordering coexisting in InxGa1–xN grown by metal
organic chemical vapor deposition”, Appl. Phys.
Lett. 75, 2202 (1999)
[19] E. F. Schubert, “Light-Emitting Diodes”, 2nd Ed.,
Cambridge (2006)
[20] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S.
Chang, S. C. Shei, C. W. Kuo and S. C. Chen, ”
InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO
and ITO p-type contacts”, Solid-state electronics,
47, 849 (2003)
[21] A. Zukauskas, M. S. Shur, R. Caska, “Introduction to
Solid-State Lighting”, Wiley (2001)
[22] H. Haritizadeh, B. Monemar, P. P. Paskov, J. P.
Bergman, B. E. Sernelius, P. O. Holtz, M. Iwaya, S.
Kamiyama, H. Amano, and I. Akasaki,
“Photoluminescence study of Si-doped
GaN/Al0.07Ga0.93N multiple quantum wells with
different dopant position”, Appl. Phys. Lett. 84,
5071 (2004)
[23] L. Hirsch, and A. S. barrière, “Electrical
characterization of InGaN/GaN light emitting diodes
grown by molecular beam epitaxy”, J. Appl. Phys. 94
5014 (2003)
[24] Y. Xi, and E. F. Schubert, “Junction-temperature
measurement in GaN ultraviolet light-emitting diodes
using diode forward voltage method”, Appl. Phys.
Lett. 85 2163 (2004)
[25] J. M. Shah, Y.-L. Li, T. Gessmann, and E. F.
Schubert, “Experimental analysis and theoretical
model for anomalously high ideality factors (n>>2.0)
in AlGaN/Gan p-n junction diodes”, J. Appl. Phys. 94
2627 (2003)
[26] G.. Franssen, E. Litwin-Staszewska, R. Piotrzkowski,
T. Suski, and P. Perlin, ”Optical and electrical
properties of homoepitaxially grown multiquantum well
in InGaN/GaN light-emitting diodes”, J. Appl. Phys.
94 6122 (2003)
[27] M. Pavesi, M. Manfredi, F. Rossi, M. Meneghini, E.
Zanoni, U. Zehnder and U. Strauss, “Temperature
dependence of the electrical activity of localized
defects in InGaN-based light emitting diodes“, Appl.
Phys. Lett. 89 041917 (2006)
[28] H. C. Casey, Jr., J. Muth, s. Krishnankutty, and J.
M. Zavada, “Dominance of tunneling current and band
filling in InGaN/AlGaN double heterostructure blue
light-emitting diodes”, Appl. Phys. Lett. 68 2867
(1996)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28359-
dc.description.abstract本論文主要研究不同量子井阻擋層摻雜結構的氮化銦鎵/氮化鎵發光二極體(LED),並探討不同的摻雜結構對其光電特性之影響。在文中藉由低溫及室溫之光激螢光譜(low temperature and room temperature photoluminescence)測量,來估算不同摻雜結構的相對內部量子效率,實驗結果發現摻雜層數越多的LED樣品,會有較高之相對內部量子效率。由電激發光譜(electroluminescence, EL)的量測中發現,摻雜層數越多的樣品,其電流增加所產生的藍移量較少,我們相信這是由於摻雜所產生之載子,對量子井內的極化電場有屏蔽的效應,降低由極化電場所產生的量子侷限史塔克效應(quantum-confined Stark effect, QCSE),而使後來注入之載子所造成的藍位移量降低。而在光強度-電流曲線的量測中,原本預估有最高內部量子效率的樣品 (6層全摻雜),所量得的總光強度並沒有最高,反而是樣品C(3層摻雜)在量測的電流範圍內,有最高的光強度。6層全摻雜的樣品其發光強度在較低的電流即呈現飽和的情況,此結果顯示了當摻雜的層數較多時,其產生的載子填入量子井內,使後來注入的載子產生溢流(overflow)的現象。
本文另外探討了接面溫度對LED在光電特性上的影響,此實驗利用了順向電壓法(forward voltage method)來量測接面溫度,發現了在相同的操作環境下,摻雜層數越多的樣品,其熱平衡時的接面溫度會較低。在變溫的光學特性量測上,由實驗結果發現,發光效率在較低電流時會衰減的較快,然而在注入電流達到量子井的飽和量後,其發光效率隨接面溫度升高衰減的現象則會趨近於固定的比例。
zh_TW
dc.description.abstractIn this thesis, the InGaN/GaN MQW LEDs with various barrier doping structures are investigated. As-grown samples are characterized with low temperature and room temperature photoluminescence measurement for the comparison of the relative internal quantum efficiency of different doping structures. The result reveals that higher internal quantum efficiency is achieved for more doped barriers LED. From the result of the electroluminescence measurement, LED samples with more doped barriers shows little blue-shift due to the injected carriers. We explain this phenomenon by Coulomb screening of the piezoelectric-field-induced quantum-confined Stark effect (QCSE). With an increasing number of doped-barriers, the internal field is more strongly compensated so that the magnitude of blue-shift due to the injected current is reduced.
From the total radiation flux measurement, the sample with six doped barriers and highest internal quantum efficiency doesn’t give highest radiation flux as expected. Sample with 3 doped and 3 undoped barriers gives the highest output radiation flux for all injection currents instead. It is also revealed that sample with all barriers doped displays an earlier saturation of the radiation flux. The saturation of the radiation flux is a strong indication that carriers overflow the active region as current densities increase.
The junction temperature measurement is also performed to investigate the influence of the junction temperature to the electrical and optical properties. We measure the junction temperature for all samples using forward voltage method. The result reveals that the sample with all doped barriers gives lowest junction temperature under the same operation condition. From the junction temperature-varied optical properties measurement, we find that the luminous efficiency will decay more quickly at low current operation. However, when the current density increases to the saturation capacity of the quantum well, the decay ratio will reach a constant.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:06:03Z (GMT). No. of bitstreams: 1
ntu-96-R94941056-1.pdf: 3801060 bytes, checksum: e8ab2c47cdcac689bb0f1b31116f5542 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 Ⅰ
致謝 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅳ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 Ⅹ
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
第二章 基礎理論簡介 5
2.1 三五族氮化物基本介紹 5
2.1.1 晶體結構 5
2.1.2 內部極化電場 7
2.1.3 量子侷限史塔克效應 9
2.1.4 銦富集區域 11
2.2發光二極體 12
2.2.1 發光原理 12
2.2.2 量子井能帶結構 14
第三章 光電特性量測 15
3.1 樣品結構 15
3.2 光激螢光譜 17
3.2.1原理 17
3.2.2 光激螢光譜實驗架構 19
3.3 光電特性量測 20
3.4 結果與討論 23
3.4.1 低溫10K與室溫300K之光激螢光譜 23
3.4.2 電流-電壓曲線 25
3.4.3 電激發光譜 29
3.4.4 光強度-電流曲線 32
第四章 接面溫度對光電特性之影響 34
4.1 接面溫度之量測 34
4.1.1 簡介 34
4.1.2 理論原理 35
4.1.3 實驗架設與流程 38
4.1.4 實驗結果 39
4.2 接面溫度對光電特性影響之量測 41
4.2.1 簡介 41
4.2.2 實驗架設 41
4.3 實驗結果與討論 42
4.3.1 接面溫度調變之電流-電壓曲線 42
4.3.2 接面溫度對發光效率之影響 45
第五章 總結與未來展望 50
5.1 總結 50
5.2 未來展望 51
參考文獻 52
dc.language.isozh-TW
dc.subject量子侷限史塔克效應zh_TW
dc.subject氮化鎵zh_TW
dc.subject量子井zh_TW
dc.subject發光二極體zh_TW
dc.subjectquantum wellen
dc.subjectlight-emitting diodeen
dc.subjectquantum-confined Stark effecten
dc.subjectGaNen
dc.title不同量子井摻雜結構之氮化銦鎵/氮化鎵多重量子井發光二極體其光電特性之研究zh_TW
dc.titleElectrical and optical characteristics of GaN-based LEDs with various doping profiles multi-quantum wellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,張允崇
dc.subject.keyword氮化鎵,量子井,量子侷限史塔克效應,發光二極體,zh_TW
dc.subject.keywordGaN,quantum well,quantum-confined Stark effect,light-emitting diode,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved