請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28340完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華 | |
| dc.contributor.author | Yu-Wei Chang | en |
| dc.contributor.author | 張育維 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:05:34Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | 參考文獻
1.I. W. Chen, and A. X. Liang, “Development of Superplastic Structural Ceramics,” Journal of American Ceramic Society, 73 [9], 2585-2609 (1990). 2.G. Boschloo, and D. Fitzmaurice, “Spectroelectrochemical Investigation of Surface in Nanostructured TiO2 Electrodes,” Journal of Physical Chemistry, B103, 2228-2231 (1999). 3. J. D. Hansen, R. P. Rusin, M. H. Teng, and D. L. Johnson, “Combined Stage Sintering Model,” Journal of American Ceramic Society, 75 [5], 1129-1135 (1992). 4. H. Su, and D. L. Johnson, “Master Sintering Curve: a Practical Approach to Sintering,” Journal of American Ceramic Society, 79 [12], 3211-3217 (1996). 5. R. L. Coble “Sintering Crystalline Solids. 1. Intermediate and Final State Diffusion Models,” Journal of Applied Physics., 32, p.787-792 (1961). 6. R. L. Coble “Intermediate-Stage Sintering: Modification and Correction of a Lattice Diffusion Model,” Journal of Applied Physics., 36, p.2327 (1965). 7.陳孟霞,主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究。國立台灣大學地質科學系碩士論文,共95頁 (2004) 8. P. Garg, S. J.Park, and R. M. German “Effect of Die Compaction Pressure on Densification Behavior of Molybdenum Powders,” International Materials Reviews,14-16(2007) 9. R. W. Siegel, S. Ramasamy, H. Hahn, Z. Q. Li, and T. Lu, “Synthesis, Characterization, and Properties of Nanophase TiO2,” Journal of Materials Research, 3 [6], 1367-1372 (1988). 10. M. Stech, P. Reynders, and J. Rödel, “Constrained Film Sintering of Nanocrystalline TiO2,” Journal of American Ceramic Society, 83 [8], 1889-1896 (2000). 11. P. Ahn, J.-K. Park, and G. Kim, “ Effect of Compact Density on Phase Transition Kinetics from Anatase Phase to Rutile Phase during Sintering of Ultrafine Titania Powder Compacts,” NanoStructured Materials, 10 [6], 1087-1096 (1998). 12. Y. Hu, H. L. Tsai, and C. –L. Huang, “Phase Transformation of Precipitated TiO2 Nanoparticles,” Materials Science and Engineering, A344, 209-214 (2003). 13. P. I. Gouma, and M. J. Mills, “Anatase-Rutile Transformation in Titania Powders,” Journal of American Ceramic Society, 84 [3], 619-622 (2001). 14. Journal of Materials Research Sintering Characteristics of Nanocrystalline TiO2, Journal of Materials Research, 609-614 (1990) 15. G. Skandan, “Processing of Nanostructured Zirconia Ceramics,” NanoStructured Materials, 5 [2], 111-126 (1995). 16. J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,” in Advances in Ceramics, Forming of Ceramics 9, ed. J. A. Mangels and G. L. Messing, American Ceramic Society, Columbus, OH, 67-75 (1984). 17. Lance, F. Valdivieso, and P. Goeuriot, “Correlation between Densification Rate and Microstructural Evolution for Pure Alpha Alumina,” Journal of the European Ceramic Society, 24, 2749-2761 (2004). 18. “Standard Test Method for Water Adsorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products,” ASTM Designation C373-88, American Society of Testing and Method, Philadephia, PA (1994). 19. K. Marthinsen, “Repeated grain boundary and grain corner nucleated recrystallization in one- and two-dimensional grain Structures,” Modelling Simul. Mater. Sci. Eng. 4 87–100(1996). 20. J. P. Ahn, J. K. Park, and G. Kim “Effect of Compact Density on Phase Transition Kinetics From Anatase Phase to Rutile Phase During Sintering of Ultrafine Titania Powder Compacts,” NanaStructured Materials, Vol. 10, NO.6 ,1987-1096(1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28340 | - |
| dc.description.abstract | 中文摘要
「主導燒結曲線模型」是一個可以預測陶瓷燒結過程中行為變化的模型,已經廣泛的應用在燒結領域。由於此模型是由全期燒結模型推導而來,依據推導過程中用到的許多假設,主導燒結曲線模型應該只能應用在微米級以上的粉體,但在近幾年的研究中卻發現主導燒結曲線模型也能完整描述奈米尺度下的燒結行為。而這一定與模型中的唯一關鍵參數「視燒結活化能」有關,雖然目前對其物理意義尚不清楚明白。本研究因此特別利用不同初始粒徑與初始相對密度的奈米二氧化鈦陶瓷粉末進行實驗,藉由設計不同條件的燒結實驗來探討視燒結活化能的變化,並且進對視燒結活化能的瞭解。 本研究選取粒徑35 nm與80 nm的奈米二氧化鈦陶瓷粉末,並分別壓製了初始相對密度44%、41%、36%的35 nm-TiO2與初始相對密度43%、41%、35%的80 nm-TiO2二氧化鈦,進行不同初始粒徑與初始相對密度的燒結實驗。每組樣本的升溫條件固定皆以3℃/min、5℃/min與10℃/min的升溫速率進行燒結,所得的結果代入主導燒結曲線模型分析。 在利用主導燒結曲線模型分析六組實驗數據過程中,發現主導燒結曲線具有擬合燒結與相變同時發生之能力,此擬合曲線中包含了四個反應,包括anatase與anatase的燒結、anatase與rutile的燒結、rutile與rutile的燒結還有anatase的相變,此四種不同的反應竟然可以只由一條主導燒結曲線描述其變化,是本研究重要的發現。 本研究透過主導燒結曲線模型的分析與估計,得到不同初始粒徑與初始生坯相對密度下的視燒結活化能,比較其關係結果發現,原本先前所認為的粒徑假說與相對密度假說在透過更多的資料點分析後,其證據顯示奈米尺度下所求得之視燒結活化能與初始粒徑、初始相對密度無關。本研究另外以German等人推導之三個參數的擬合方程式擬合本研究數據,結果發現其擬合結果與利用本研究之擬合方程式所得到的視燒結活化能非常相近,僅在粒徑80 nm 初始相對密度41%的燒結條件下得到較高的活化能,因此根據目前實驗結果,初始相對密度、初始粒徑與視燒結活化能應該沒有關係。 | zh_TW |
| dc.description.abstract | Abstract
Master Sintering Curve (MSC) model, which can predict the sintering behaviors of ceramic sintering, has been widely used in sintering during the past few years. Based on the inherited assumptions from the combined stage sintering model, from which the MSC was derived, MSC should not work in the sintering of nanocrystalline ceramic, but as we have proved in our earlier work that it does work. Though we still don’t know the physical meaning of the only parameter of MSC, i.e., the apparent activation energy Qa, it must have something to do with the excellent applicability of the model. This research experimenting on the sintering of nanocrystalline titania samples with various average initial diameters and relative density, explores the variations of Qa and helps increase our understandings of the parameter. Sintering experiments were conducted using both 35 nm diameter titania samples with initial relative densities of 44%, 41% and 36%, and 80 nm diameter titania samples with initial relative densities of 43%, 41% and 35%. Each set of samples were sintered at 3oC/min, 5oC/min and 10oC/min. One of the great discoveries of the study is that the MSC can be used to analyze and describe the complex reactions that both phase transformation and sintering happened at same time. In addition, using both our five-parameter S-curve fitting and German’s three-parameter curve fitting lead to very similar results and values of Qa. Most importantly, we cannot find satisfactory data to support the hypothesis that Qa varies linearly either with particle diameter or with initial porosity of the samples. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:05:34Z (GMT). No. of bitstreams: 1 ntu-96-R93224207-1.pdf: 1985240 bytes, checksum: 2accd5e31deab6d9959d845d25b463ce (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
致謝…………………………………………………………….. i 中文摘要…………………………………………………………….... ii Abstract……………........................................................ iv 目錄…………………………………………………………………… v 圖目錄………………………………………………………………… vii 表目錄………………………………………………………………… x 第一章 前言………………………………………………………….. 1 1-1 介紹……………………………………………………………. 1 1-2 目的……………………………………………………………. 1 第二章 文獻回顧…………………………………………………….. 2 2-1 燒結機制………………………………………………………. 2 2-2 燒結三階段……………………………………………………. 4 2-3 主導燒結曲線模型(Master Sintering Curve Model, MSC)…. 5 2-4 視燒結活化能與粒徑關係之研究…………………………….. 8 2-5 不同擬合主導燒結曲線之方法.……………………………….. 9 2-6 二氧化鈦…………………………………………………….. 10 第三章 實驗步驟與分析…………………………………………….. 13 3-1 粉末準備………………………………………………………. 14 3-2 儀器分析………………………………………………………. 14 3-3 粉末分析結果與特性…………………………………………. 17 3-4 粉末前處理……………………………………………………. 19 3-5 生坯製備………………………. ……………………………... 19 3-6 燒結實驗………………………………………………………. 21 3-6-1 升溫設計…………………………………………………. 21 3-6-2 儀器校正…………………………………………………. 22 3-7 密度量測………………………………………………………. 23 第四章 實驗結果與討論…………………………………………….. 25 4-1 粉末製坯壓力與相對密度關係………………………………. 25 4-2 主導燒結曲線模型分析結果與討論…………………………. 26 4-2-1 初步 MSC分析結果…………………………………….. 26 4-2-1.1 MSC分析35 nm二氧化鈦之結果…………………… 26 4-2-1.2 MSC分析80 nm二氧化鈦之結果…………………… 28 4-2-2 MSC資料點偏移討論……………………………………. 30 4-2-3 XRD分析MSC異常資料點結果…………………………. 31 4-2-4 MSC區段分析結果與討論……………………………….. 35 4-2-4.1 35 nm二氧化鈦擬合結果……………………………. 35 4-2-4.2 80 nm二氧化鈦擬合結果……………………………. 40 4-2-4.3 35 nm TiO2-44%樣本之熱膨脹儀擬合結果………… 43 4-2-5 主導燒結曲線擬合相變與燒結結果討論………………. 44 4-3 相變討論………………………………………………………. 45 4-4 視燒結活化能討論……………………………………………. 46 4-5 German擬合方程式與本研究比較……………………………. 50 第五章 結論………………………………………………………… 52 參考文獻……………………………………………………………... 53 附錄 A 全期燒結模型公式推導……………………………………… 56 附錄 B 符號表………………………………………………………… 65 附錄 C 奈米二氧化鈦35nm與80nm燒結實驗數據………………… 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 主導燒結曲線模型 | zh_TW |
| dc.subject | 視燒結活化能 | zh_TW |
| dc.subject | 相變 | zh_TW |
| dc.subject | Master Sintering Curve Model | en |
| dc.subject | apparent sintering activation energy | en |
| dc.subject | phase transformation | en |
| dc.title | 奈米二氧化鈦之視燒結活化能與相變研究 | zh_TW |
| dc.title | Study on the apparent sintering activation energy and phase transformation of nanocrystalline Titania | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃武良,王玉瑞,宋健民 | |
| dc.subject.keyword | 主導燒結曲線模型,視燒結活化能,相變, | zh_TW |
| dc.subject.keyword | Master Sintering Curve Model,apparent sintering activation energy,phase transformation, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
