Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基
dc.contributor.authorHsiao-Wen Chuen
dc.contributor.author朱孝文zh_TW
dc.date.accessioned2021-06-13T00:05:01Z-
dc.date.available2010-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citationAsavapist, S.; Fowler, G.; Cheeseman, C.; Solution chemistry during
cement hydration in the presence of metal hydroxide wastes, Cem.
Concr. 1997, Res. 27, 1249,.
Butt, D.P., K.S. Lackner, C.H. Wendt, Y.S. Park, A. Bejamin, D.M.
Harradine, T. Holesinger, M. Rising, and K. Nomura: A method for
permanent disposal of CO2 in solid form; World Resource Review.
1997., 9 (3): 324-336.
Butt, D.P., Lackner K.S., and Wendt C.H.: The kinetics of binding carbon
dioxide in magnesium carbonate; 23th international conference on
coal utilization and fuel systems, Clearwater, FL, USA. 1998
Butt, D.P., Lackner K.S., Wendt C.H., Kung S.D., Lu, Y.C. & Bremser,
J.K.; Kinetics of thermal dehydroxylation and carbonation of
magnesium hydroxide, Journal of American Ceramic Society. 1996,
79/7, pp. 1892-1898.
Chiung-Fang Liu, Shin-Min Shih., Ren-Bin Lin, Kinetics of the reaction of
Ca(OH)2 /ash sorbent with SO2 at low temperatures., Chemical
Engineering Science 57, 2002, 93–104.
Carey, J.W., E.P. Rosen, D. Bergfeld, S.J. Chipera, D.A. Counce, M.G.
Snow, H.-J. Ziock, and G.D. Guthrie., Experimental studies of the
serpentine carbonation reaction; 28th international technical
conference on coal utilization & fuel systems1, Clearwater, FL,USA.
2003, 331-340.
Chizmeshya, A.V.G., M.J. McKelvy, D. Gormley, M. Kocher, R. Nunez,
Y.-C. Kim, and R. Carpenter ., CO2 mineral carbonation processes
in olivine feedstock:insights from the atomic scale simulation; 29th
international technical conference on coal utilization & fuel systems,
Clearwater, FL, USA. 2004
Chizmeshya, A.V.G., M.J. McKelvy, G. Wolf, R. Sharma, O.F. Sankey,
H.Bearat, J. Diefenbacher, and R.W. Carpenter., Quantum
simulation studies of olivine mineral carbonation; 28th international
technical conference on coal utilization & fuel systems, Clearwater,
FL, USA. 2003
Dahlin, D.C., W.K. O'Connor, D.N. Nilsen, G.E. Rush, R.P. Walters, and
P.C. Turner., A method for permanent CO2 sequestration:
supercritical CO2 mineral carbonation; 17th annual international
Pittsburgh coal conference, Pittsburgh, PA, USA. 2002
Fauth, D.J.; Goldberg, P.M.; Soong, Y.; O’Connor, W.K.; Dahlin, D.C.;
Nilsen, D.N.; Walters, R.P.; Lackner, K.S.; Ziock,H.-J.; McKelvy,
M.J. & Chen, Z.-Y. Carbon dioxide storage as mineral carbonate,
Preprints of symposia-American Chemical Society, Division Fuel
Chemistry, 2000. pp. 708-712.
Fernandez Bertos, M.; Simons, S. J. R.; Hills, C. D.; Carey. P. J.; A
review of accelerated carbonation technology in the treatment of
cement-based materials and sequestration of CO2. Journal of
Hazardous Materials B112, 193-205, 2004.
Fernandez, A. I.; Chineons, J.M.; Segarra, M.; Fernandez, M. A. &
Espiell, F. Kinetic study of carbonation of MgO slurries,
Hydrometallurgy 53/2, 1999, pp. 155-167.
Guthrie, G. D.; Carey, J. W.; Bergfeld, D.; Byler, D.; Chipera, S.; Ziock, H.
J. & Lackner, K. S. Geochemical aspects of the carbonation of
magnesium silicates in an aqueous medium, NETL Conference on
Carbon Sequestration. 2001.
Goff, F., G. Guthrie, and K.S. Lackner., Carbon dioxide sequestering
potential of ultramafic rocks; 23rd annual technical conference on
coal utilization and fuel systems, Clearwater, FL, USA. 1998
Goldberg, P., C. Zhong-Ying, W.K. O'Connor, and R.P. Walters., CO2
mineral sequestration studies in US; 1st national conference on
carbon sequestration, Washington DC, USA. 2001
Gerdemann, S.J., D.C. Dahlin, and W.K. O'Connor., Carbon dioxide
sequestration by aqueous mineral carbonation of magnesium
silicate minerals; 6th international conference on greenhouse gas
control technologies, Kyoto, Japan. 2002
Huijgen Wouter J.J., Geert-Jan Witkamp, Rob N.J., Comans. Mineral
CO2 sequestration by steel slag carbonation. Environ. Sci.
Technol. 2005, 39, 9676-9682.
Huijgen, W.J.J. and R.N.J. Comans., Mineral CO2 sequestration in
alkaline solid residues; 7th international conference on greenhouse
gas control technologies, Vancouver, BC, Canada. 2004
Huijgen, W.J.J., R.N.J. Comans., Carbon dioxide sequestration by
mineral carbonation, literature review; Energy research Centre of
the Netherlands, 2003 ECN-C--03-016, Petten, The Netherlands.
Herzog, H. J.; Eliasson, B. & Kaarstad, O. Capturing greenhouse gases,
Scientific American 282/2, PP. 54-61, 2000.
Hills, C. D.; US5,997,629, Hazard Waste Treatment, Imperial College of
Science, Technology and Medicine, London, 1999.
Jia, L.; Anthony, E.J. Mineral carbonation and ZECA, Proceedings of 6th
international conference on greenhouse gas control technologies,
Kyoto, Japan. 2002.
Johnson, D. C. Accelerated carbonation of waste calcium silicate
materials, SCI Lecture Paper Series/108. PP. 1-10. 2000.
Johannesson, B.; Utgenannt, P.; Microstructual changes caused by
carbonation of cement mortar, Cem. Concr. Res. 31, 925, 2001.
Kakizawa, M., A. Yamasaki, and Y. Yanagisawa., A new CO2 disposal
process using artificial rock weathering of calcium silicate
accelerated by acetic acid; Energy. 2001, (26): 341-354.
Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya., Absorption and
fixation of carbon dioxide by rock weathering; Energy Conversion
and Management. 1997. 38: S461-466.
Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya., Absorption and
fixation of carbon dioxide by rock weathering; Energy Conversion
and Management. 1997. 38: S461-466.
Kohlman, J.; Zevenhoven, R. The removal of CO2 from flue gases using
magnesium silicates, in Finland, Proceedings of the 11th
international conference on coal sciences (ICCS-11), San
Fransisico, California, USA. 2001.
Lackner, K.S.; A Guild to CO2 sequestration., Science, Vol300, 13 June
2003, p1677-1678.
Lackner, K.S.; Carbonate chemistry for sequestering fossil carbon,
Annual review of energy and the environment 27, pp. 193-232.
2002.
Lackner, K.S., D.P. Butt, and C.H. Wendt., Magnesite disposal of carbon
dioxide; 22th international conference on coal utilization and fuel
systems, Clearwater, FL, USA. 1997
Lackner, K.S., D.P. Butt, C.H. Wendt, F. Goff, and G. Guthrie., Carbon
dioxide disposal in mineral form, Keeping coal competitive.; Los
Alamos National Laboratory, LA-UR-97-2094, Los Alamos, NM,
USA. 1997
Lackner, K.S., D.P. Butt, and C.H. Wendt ., Progress on binding CO2 in
mineral substrates; Energy Conversion and Management. 1997.
38: S259-264
Lackner, K.S., C.H. Wendt, D.P. Butt, E.L. Joyce, and D.H. Sharp.,
Carbon dioxide disposal in carbonate minerals; Energy, 1995. 20
(11): 1153-1170.
Liu, L.; Ha, J.; Hashida, T.; Teramura, S.; Development of a CO2
solidification method for recycling autoclaved lightweight concrete
waste, J. Master. Sci. Lett. 20, 2001.
Liu, H.;Katagiri, S.; Kaneko, U. & Okazaki, K. Sulfation behavior of
limestone under high CO2 concerntration in O2/CO2 coal
combustion, Furl 79/8, pp. 945-953. 2000a.
McKelvy, M.J., A.V.G. Chizmeshya, J. Diefenbacher, H. Bearat, and G.
Wolf., Exploration of the role of heat activation in enhancing
serpentine carbon sequestration reactions; Environmental
Science and Technology, 2004.38 (24): 6897-6903.
McKelvy, M. J.; Chizmeshya, A. V. G.; Bearat, H.; Sharma, R. &
Carpenter, R. W. Developing a mechanistic understanding of
lamellar hydroxide mineral carbonation reaction processes to
reduce CO2 mineral sequestration process cost, NETL
Conference on Carbon Sequestration. 2001a.
McKelvy, M. J.; Sharma, R.; Chizmeshya, A. V. G.; Carpenter, R. W. &
Streib, K. Magnesium hydroxide dehydroxylation: in situ
nanoscale observations lamellar nucleation and growth, Chemical
of Materials 13/3, pp. 921-926. 2001b.
Maroto-Valer, M.M., J.M. Andresen, Y. Zhang, and M.E. Kuchta.,
Integrated carbonation: a novel concept te develop a CO2
sequestration module for vision 21 power plants; Pennsylvania
State University, Final report DOE DE-FG26-01NT41286,
University Park, PA, USA. 2003
NETL. Proceedings of Workshop NTEL Mineral CO2 Sequestration.
2001.
Newall, P. S.; Clarke, S. J.; Haywood, H. M.; Scholes, H.; Clarke, N. R. &
King, P. A. CO2 storage as carbonatie minerals, IEA, Cheltenham,
UK. 1999.
Maroto-Valer, M.M., M.E. Kuchta, Y. Zhang, and J.M. Andrésen.,
Integrated carbonation: a novel concept to develop a CO2
Sequestration module for power plants; 6th international
conference on greenhouse gas control technologies, Kyoto,
Japan. 2002
Maroto-Valer, M.M., D.J. Fauth, M.E. Kuchta, Y. Zhang, J.M. Andresen,
and Y. Soong., Study of magnesium rich minerals as carbonation
feedstock materials for CO2 sequestration; 18th annual
international Pittsburgh coal conference, Newcastle, Australia.
2001
Olga Shtepenko, Colin Hills, Adrian Brough, Mike Thomas. The effect of
carbon dioxide on β-dicalcium silicate and Portland cement.
Chemical Engineering Journal, 2006, 118, 107-118.
O'Connor, W.K., D.C. Dahlin, S.J. Gerdemann, G.E. Rush, and L.R.
Penner., Energy and economic considerations for ex-situ
aqueous mineral carbonation; 29th international technical
conference on coal utilization & fuel systems, Clearwater, FL,
USA. 2004
O`connor, W.K., D.C. Dahlin, D.N. Nilsen, S.J. Gerdemann, G.E. Rush,
L.R. Penner, R.P. Walters and P.C. Turner, “Continuing Studies on
Direct Aqueous Mineral Carbonation for CO2 sequestration,” in
“Proc. 27th Int. Tech. Conf. on Coal Uril. & Fuel Syst.”, Clearwater,
FL, March 4-7, 2002, pp. 819-830.
O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, S.J. Gerdemann, G.E. Rush,
R.P. Walters, andP.C. Turner., Research status on the
sequestration of carbon dioxide by direct aqueous mineral
carbonation; 18th annual international Pittsburgh coal
conference, Newcastle, Australia. 2001
O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and
P.C. Turner., CO2 storage in solid form: a study of direct mineral
carbonation; 5th international conference on greenhouse gas
technologies, Cairns, Australia. 2000.
Park, Ah-Hyung Alissa, Fan Liang-Shih. Carbon dioxide mineral
sequestration: Chemical and Physical Activation of Aqueous
Mineral Carbonation and pH Swing Process. Department of
chemical engineering, 2005.
Park, Ah-Hyung Alissa, Fan Liang-Shih. CO2 mineral sequestration:
physically activated dissolution of serpentine and pH swing
process; Chemical Engineering Science, 59, 5242-5247. 2004.
Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration:
chemically enhanced aqueous carbonation of serpentine;
Canadian journal of chemical engineering. 2003. 81 (3): 885 -890.
Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration in a
highpressure,high temperature three-phase fluidised bed reactor;
20th annual international Pittsburgh coal conference, Pittsburgh,
PA, USA. 2003
Penner, L.R., W.K. O'Connor, D.C. Dahlin, S.J. Gerdemann, and G.E.
Rush., Mineral carbonation: Energy costs of pretreatment options
and insights gained from flow loop reaction studies; 3rd annual
conference on carbon sequestration, Alexandria, VA, USA. 2004
Sorochkin, M. A.; Shchrov, A. F.; Safonov, I. A.; Study of the possibility
of using carbon dioxide for accelerating the hardening of products
made from Portland cement, J. Appl. Chem. 48, 1975.
Schulze, R.K., M.A. Hill, R.D. Field, P.A. Papin, R.J. Hanrahan, and D.D.
Byler., Characterization of carbonated serpentine using XPS and
TEM; Energy Conversion and Management, 2004. 45 (20):
3169-3179.
Walton, J.; Bin-Shafique, S.; Smith, R.; Gutierrez, N.; Tarquin, A.; Role
of carbonation in transient leaching of cementitious waste forms,
Environ, Sci. Technol. 31, 2345, 1997.
Wendt, C.H., D.P. Butt, K.S. Lackner, R. Vaidya, and H.-J. Ziock.,
Thermodynamic calculations for acid decomposition of serpentine
and olivine in MgCl2 melts III; Los Alamos National Laboratory,
LA-UR-98-5633, Los Alamos, NM, USA. 1998
Wendt, C.H., D.P. Butt, K.S. Lackner, and H.-J. Ziock., Thermodynamic
calculations for acid decomposition of serpentine and olivine in
MgCl2 melts I; Los Alamos National Laboratory, LA-UR-98-4528,
Los Alamos, NM, USA. 1998
Wu, J.C.S., J.-D. Sheen, S.-Y. Chen, and Y.-C. Fan., Feasibility of CO2
fixation via artificial rock weathering; Industrial and engineering
chemistry research. 2001, 40 (18):3902-3905
Zhang, Q., K. Sugiyama, and F. Saito., Enhancement of acid extraction
of magnesium and silicon from serpentine by mechanochemical
treatment;Hydrometallurgy. 1996, 45: 323-331.
Zevenhoven, R. and S. Teir., Long-term storage of CO2 as magnesium
carbonate in Finland; 3rd annual conference on carbon capture
and sequestration, Alexandria, VA, USA. 2004
徐啟龍,「以礦物碳酸化法封存CO2」, 碩士論文,國立台灣大學環境工程研究所,台北,2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28316-
dc.description.abstract以鹼性固體廢棄物碳酸化法封存二氧化碳對於減少二氧化碳排放至大氣中是為可行的方法。三種以鈣成份為主的鹼性固體廢棄物即高細度水淬爐石,飛灰爐石,高強牌高爐水泥被選為二氧化碳封存的材料。這三種材料的優點是便宜,離二氧化碳排放源較近且有較好的反應性。三種材料皆在濕式(泥漿)的條件下與二氧化碳進行碳酸化反應,並探討其反應機制。
操作因子有反應時間、泥漿的液固比、反應溫度、二氧化碳分壓和溶液的初始pH值,改變這些因子來探討其對轉換率的影響。結果顯示高強牌高爐水泥在反應時間達到12小時,溫度控制在160 oC,二氧化碳壓力控制在700psig,且粒徑小於44μm時有最大的轉換率約86%。最主要影響轉換率的因子為反應時間(5分鐘到12小時)與反應溫度(40到160 oC),而此反應動力可用表面覆蓋模式來描述。
另外一種碳酸化方式叫做pH震盪,藉由此方法來提高碳酸化的轉換率。在這系統中,控制pH值來分出三種產物即碳酸鈣、高二氧化矽含量固體和金屬混合物固體。pH 震盪的優點在於其消耗較少的能源並且產生的產物碳酸鈣具有經濟價值可用來補償封存二氧化碳所消耗的成本。最後,應用LCA方法來計算整個實驗過程中二化碳的淨排放量,結果顯示,高強牌高爐水泥和pH震盪程序的二氧化碳淨排放量為-0.028和-0.05 kg/kg (負號代表封存),表示其為可行的二氧化碳減量技術。
zh_TW
dc.description.abstractCO2 sequestration by carbonation of alkaline solid wastes is a potential technology to reduce carbon dioxide emissions to the atmosphere. In this study, three kinds of alkaline Ca-rich solid wastes, i.e., ultra-fine slag; fly ash slag; blended hydraulic cement slag, are selected as possible materials for CO2 sequestration. These materials were carbonated in aqueous condition (slurry) and operated under various conditions of reaction time, liquid to solid ratio, temperature, CO2 partial pressure and initial pH to determine their influence on the carbonation conversion.
The results indicate that the blended hydraulic cement slag has the highest carbonation conversion about 86% in 12 hr at 700 psig and 160 oC. The major factors effecting the conversion are reaction time (5 min to 12 hr) and temperature (40 oC to 160 oC), furthermore, the reaction kinetics can be expressed by surface coverage model.
Another route of carbonation, so called pH swing process, was also employed to enhance the conversion of ultra-fine slag. By controlling the pH in this process, three solid products, i.e., CaCO3, SiO2¬-rich solids and metal mixture solids were formed. The advantages of pH swing process include lower energy consumption and the high purity product of CaCO3 which could reduce the operation and maintenance cost of this sequestration technology. Finally, LCA method was applied to compute the net CO2 emission which indicates that both the blended hydraulic cement slag and pH swing process exhibit a negative sign of CO2 emission, i.e., -0.028 and -0.05 kg/kg, respectively, therefore, they are feasible techniques to reduce CO2.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:05:01Z (GMT). No. of bitstreams: 1
ntu-96-R94541126-1.pdf: 3078999 bytes, checksum: 8f37c8f72804a7a74f6ec8a1d7d0d3fd (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
謝誌 I
Abstract II
中文摘要 IV
Contents V
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1-1
1-1 Research Background 1-1
1-2 Objectives 1-5
Chapter 2 Literatures Review 2-1
2-1 Selection of alkaline solid wastes 2-1
2-1-1 Selection of suitable element 2-1
2-1-2 Selection of suitable alkaline solid wastes 2-1
2-2 Principles of carbonation reaction 2-3
2-2-1 Thermodynamics of carbonation 2-3
2-2-2 Kinetics 2-6
2-2-2-1 Dry carbonation 2-6
2-2-2-2 Aqueous carbonation 2-8
2-3 Carbonation process routes 2-9
2-3-1 Pre-treatment 2-9
2-3-2 Direct carbonation 2-12
2-3-3 Indirect carbonation 2-17
2-3-4 Comparison of process routes 2-22
2-4 Life Cycle Assessment 2-27
Chapter 3 Materials and Methods 3-1
3-1 Research flowchart 3-1
3-2 Materials 3-2
3-2-1 Source of agents 3-2
3-2-2 Procedure of preparing alkaline solid wastes 3-3
3-3 Physico-chemical analyses 3-6
3-3-1 Density Analysis 3-6
3-3-2 Particle Size Distribution Analysis 3-6
3-3-3 Specific Surface Area and Pore Size Distribution Analysis 3-7
3-3-4 Scanning Electron Microscope (SEM) 3-8
3-3-5 X-Ray Diffractometry (XRD) 3-8
3-3-6 Composition Analysis 3-9
3-4 Carbonation Experiment 3-10
3-4-1 Direct Aqueous Carbonation unit process 3-10
3-4-2 pH swing process (Indirect Carbonation) 3-14
3-5 Life Cycle Assessment 3-16
Chapter 4 Results and Discussion 4-1
4-1 Physical characteristics and composition of Alkaline solid waste 4-1
4-1-1 Particle size, Density, Specific area and Pore
Distribution 4-1
4-1-2 Composition analysis 4-4
4-1-3 SEM analysis 4-5
4-2 Direct Aqueous Carbonation 4-8
4-2-1 Preliminary experiment 4-8
4-2-2 Factors affecting carbonation reaction 4-11
4-2-2-1 Effects of reaction time 4-11
4-2-2-2 Effects of liquid to solid ratio 4-13
4-2-2-3 Effects of reaction temperature and reaction pressure 4-15
4-2-2-4 Effects of initial pH 4-19
4-2-3 Product analyses 4-22
4-2-3-1 SEM analysis for carbonated solid wastes 4-22
4-2-3-2 XRD analysis for fresh and carbonated solid wastes 4-24
4-2-4 Predictive model and the optimized operating conditions for CO2 sequestration 4-26
4-2-4-1 Predicative Model for CO2 Sequestration 4-26
4-2-4-2 Determination of the Optimum
Operating Conditions 4-32
4-3 pH Swing process (Indirect Aqueous Carbonation) 4-34
4-3-1 Leaching test of calcium 4-34
4-3-2 Analyses of products and by-products 4-35
4-3-3 Conversion comparison 4-42
4-4 CO2 Budget Estimation 4-43
4-4-1 The CO2 emission in the process of transportation 4-43
4-4-2 The CO2 emission due to energy consumption 4-44
4-4-3 The CO2 emission due to chemicals process 4-45
4-4-4 The CO2 sequestration in carbonation process 4-45
4-4-5 Using amounts assessment in laboratory scale 4-48
Chapter 5 Conclusions and Recommendations 5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-2
References
Appendix
dc.language.isoen
dc.title以鹼性固體廢棄物碳酸化法封存二氧化碳zh_TW
dc.titleCO2 sequestration by carbonation of alkaline solid wasteen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡,顧洋,林財富,曾迪華
dc.subject.keyword鹼性固體廢棄物,二氧化碳封存,pH震盪,生命週期評估,zh_TW
dc.subject.keywordAlkaline solid waste,CO2 sequestration,pH swing,LCA,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved