請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉麗飛(Li-Fei Liu) | |
dc.contributor.author | Wei-Yi Lin | en |
dc.contributor.author | 林維怡 | zh_TW |
dc.date.accessioned | 2021-06-13T00:04:24Z | - |
dc.date.available | 2007-07-31 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-28 | |
dc.identifier.citation | Bergmans, H.E., van Die, I.M.,and Hoekstra W.P. (1981) Transformation in Escherichia coli: stages in the process. Journal of Bacteriology 146, 564-570.
Birnboim, H.C. (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods in Enzymology 100, 243-255. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., and Görlach, J. (2001). Growth stage–based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510. Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feed back loop regulated by CLV3 activity. Science 289, 617-619. Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martiessen, R.A. (2000). Asymmetric leaves1 mediates leaves patterning and stem cell function in Arabidopsis. Nature 408, 967:971. Canales, C., Grigg, S., and Tsiantis, M. (2005). The formation and patterning of leaves: recent advances. Planta 221, 752–756. Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156-159. Dai, M., Hu, Y., Zhao, Y., Liu, H., and Zhou, D.X. (2007). A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiology 144, 380-390. Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology 13, 1768–1774. Eshed, Y., Baum, S.F., Perea, J.V., and Bowman, J.L. (2001). Establishment of polarity in lateral organs of plants. Current Biology 11, 1251-1260. Eshed, Y., Izhaki, A., Baum, S.F., Floyd, S.K., and Bowman. J.L. (2004). Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131, 2997-3006. Fu, Y., Xu, L., Xu, B., Yang, L., Ling, Q., Wang, H., and Huang, H. (2007). Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning. Plant Cell Physiology 48, 724–735. Garcia, D., Collier, S.A., Byrne, M.E., and Martienssen, R.A. (2006). Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Current Biology 16, 933-938. Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989-994 Haecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M. and Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657-668. Hay, A., Kaur, H., Phillips, A., Hedden, P., Hake, S., and Tsiantis, M. (2002). The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology 12. 1557-1565. Hay, A., Barkoulas, M., and Tsiantis, M. (2006). ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133, 3955-3961. Heidstra, R., Welch, D., and Scheres, B. (2004). Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes and Development 18, 1964-1969. Horsch R.B., Fry J.E., Hoffman N.L., Eichholtz D., Rogers S.G., Fraley R.T. (1985). A simple and general method of transferring genes into plants. Science, 227, 1229-1231. Jin, H., and Martin, C. (1999). Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology 41, 577–585. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C. (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88. Kamiya, N., Itoh, J., Morikami, A., Nagato, Y., and Matsuoka, M. (2003). The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant Journal 36, 45-54. Kerstetter R.A., Laudencia-Chingcuanco, D., Smith, L.G., and Hake, S. (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124, 3045–3054. Kerstetter R.A., Bollman, K., Taylor, R.A., Bomblies, K., and Poethig, R.S. (2001). KANADI regulates organ polarity in Arabidopsis. Nature 411, 706-709. Kidner, C.A. and Timmermans, M. C.P. (2007). Mixing and matching pathways in leaf polarity. Current Opinion in Plant Biology 10, 13-20. Kim, J., Jung, J.H., Reyes, L., Kim, Y.S., Kim, S.Y., Chung, K.S., Kim, J.A., Lee, M., Lee, Y., Kim, V.N., Chua, N.H., and Park, C.M. (2005). microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant Journal 42, 84–94. Laux, T., Mayer, K.F.X., Berger, J., and Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. Li, H., Xu, L., Wang, H., Yuan, Z., Cao, X., Yang, Z., Zhang, D., Xu, Y., and Huang, H. (2005). The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 17, 2157-2171. Lin, W.C., Shuai, B., and Springer, P.S. (2003). The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMERTRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15, 2241-2252. Long, J.A., Moan, E.I., Medford , J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69. Marsch-Martinez, N., Greco, R., Becker, J. D., Dixit, S., Bergervoet, J. H. W., Karaba, A., de Folter, S., and Pereira, A. (2006). BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Molecular Biology 62, 825–843. Matsumoto, N., and Okada, K. (2001). A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes and Development 15, 3355–3364. Mayer, K.F.X., Schoof, H., Haecker, A., Lenard, M., Jürgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709-713. McHale, N. A., and Koning, R.E. (2004a) PHANTASTICA regulates development of adaxial mesophyll in Nicotiana leaves. Plant Cell 16, 1251-1262. McHale, N. A., and Koning, R.E. (2004b). MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16, 1730-1740. Nardmann, J., Ji, J., Werr, W., and Scanlon, M.J. (2004). The maize duplicate genes narrow sheath1and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827-2839. Ochando, I., Jover-Gil, S., Ripoll, J.J., Candela, H., Vera, A., Ponce, M.R., Martínez-Laborda, A., and Micol, J.L. (2006). Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in arabidopsis. Plant Physiology 141, 607-619. Ohashi-Ito, K., Kubo, M., Demura, T., and Fukuda, H. (2005). Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiology 46, 1646–1656. Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N., and Clark, S.E. (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61–76. Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., and Matsuoka, M. (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthestic gene in the tobacco shoot apical meristem. Genes and Development 15, 581-590. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning – A Laboratory Manual, 2nd Edition. Cold Spring Habour Laboratory Press, New York. Scanlon, M. J. (2003). The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiology 133, 597–605. Scanlon, M.J., Schneeberger, R.G., and Freeling, M. (1996). The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122, 1683-1691. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL Genes. Cell 100, 635–644. Shi, Z., Wang, J., Wan, X., Shen, G., Wang, X., and Zhang, J. (2007). Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226, 99-108. Sheu, J.J., Yu, T.S., Tong, W.F., and Yu, S.M (1996). Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional process. Journal of Biological Chemistry 271, 26998-27004. Siegfried K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., Bowman, J.L. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117-4128. Sun, Y., Zhou, Q., Zhang, W., Fu, Y., and Huang, H. (2002). ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta 214, 694–702. Vollbrecht, E., Veit, B., Sinha, N., Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350, 241–243. Waites, R., and Hudson, A. (1995). phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus, Development 121, 2143-2154. Waites, R., Selvadurai, H.R.N., Oliver, I.R., and Hudson, A. (1998), The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789. Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., and Benfey, P.N. (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595-603. Xu, J., Hofhuis, H., Heidstra, R., Sauer, M., Friml, J., and Scheres, B. (2006). A molecular framework for plant regeneration. Science 311, 385-388. Xu, L., Xu, Y., Dong, A., Sun, Y., Pi, L., Xu, Y., and Huang, H. (2003). Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130, 4097-4107. Zheng, Z., Hayashimoto, A., Li, Z., and Murai, N. (1991). Hygromycin resistance gene cassettes for vector construction and selection of transformed rice protoplasts. Plant Physiology 97, 832-835. Zhong, R., and Ye, Z.H. (2004). amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiology 45, 369-385. Zhou, G.K., Kubo, M., Zhong, R., Demura, T., and Ye, Z.H. (2007). Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiology 48, 391–404. National Center for Biological Information (NCBI)http//www.ncbi.nlm.nih.gov/ The Arabidopsis Information Resource (TAIR) http://www.arabidopsis.org/indes.jsp | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28288 | - |
dc.description.abstract | 植物葉片為進行光合作用及氣體交換的主要器官,是由莖頂分生組織(shoot apical meristem,SAM)周圍區域(peripheral zone)的幹細胞改變細胞分裂的速度及方向,並轉變為具有葉片特性的細胞,而在葉片發育形成過程有許多轉錄因子參與調控,使葉片得以順利發生並延展。本論文主要探討三個與發育相關基因— NTPHAN、SCARECROW(SCR)及WOX3,對葉片形態的影響。其中,金魚草的PHANTASTICA(PHAN)基因和野生菸草的同源基因NSPHAN皆參與葉片向軸面發育的調控。SCR基因參與調控阿拉伯芥根及莖部皮層細胞的平周分裂,形成內皮和皮層。阿拉伯芥的PRS/WOX3基因參與子葉原基邊緣細胞專一性的決定,及調控分生組織邊緣細胞分裂的速度。本試驗藉由基因轉殖技術,增加上述三個基因的表現後,觀察其對菸草葉片形態的影響。
以雙偶載體pCAMBIA1302為骨架,構築以CaMV 35S啟動子驅動基因持續性表現的載體,利用農桿菌轉殖法將NTPHAN、WOX3及SCR基因分別或共同轉殖到菸草(Nicotiana tabacum, Wisconsin38),試驗結果得到表現SCR基因的轉殖株1株,表現WOX3基因的轉殖株1株,以及同時表現NTPHAN和SCR的轉殖株4株。觀察轉殖株外表形態及葉片的組織切片,持續表現WOX3基因的植株具有明顯且穩定的形態變異,轉殖株的葉片由於上表皮細胞無法延展,造成向上捲曲的情形,且葉肉細胞排列緊密,形態也異常,而葉片主脈有扭曲的現象,組織切片結果顯示,維管束的分布及排列發生異常;表現SCR基因的轉殖株在組織培養階段有異位葉片發生,部分葉肉細胞有增加平周分裂的情形,移植到土盆後,葉片較非轉殖株狹長,但解剖構造上沒有明顯變異;同時表現NTPHAN和SCR基因的轉殖株在發育初期會有較狹長葉片發生,而後會葉片會延展,邊緣呈波浪狀,外表形態與非轉殖株沒有明顯差異,由葉片的組織切片結果顯示,葉肉細胞排列相當緊密,且葉片組織細胞沒有明顯的向軸-背軸極性。檢測轉殖株葉片向軸-背軸極性,結果顯示轉殖菸草葉片中,調控向軸極性建立之基因-NtPHAV的表現增加。 綜合以上論述,NTPHAN基因的表現影響葉片極性的建立,SCR基因的表現會影響葉肉細胞的分裂,而WOX3基因的表現則會造成菸草葉片的形態及解剖構造上顯著的變異,顯示這些基因雖然參與調控不同階段或器官的發育,但可能都會影響菸草葉片形態發育和極性建立之相關基因的表現,進而改變葉片的外表形態及構造。 | zh_TW |
dc.description.abstract | Leaves are the major photosynthesis and gas exchange organ of plants. They originate from the peripheral zone of the shoot apical meristem (SAM), stem cells change the rates and the planes of cell division, and are recruited into the leaf primordia. A number of transcription factors are involved in the regulation of leaf development and extension. In this thesis, three genes related to the development of plant organs were studied, which are NTPHAN, SCARECROW (SCR) and WOX3. PHANTASTICA (PHAN) from Antirrunhum and NSPHAN, the Nicotiana ortholog of PHAN, regulates the development of adaxial part of leaves. SCR regulates the periclinal cell division in the cortex of roots and stems to form cortex and endodermis. WOX3 specifies the cell fate at the margins of cotyledonary primordia and regulates the rate of cell division in the margins of meristem in Arabidopsis. The effects on the leaf morphology of these three genes were studied by transformation into tobacco.
These genes, driven by CaMV 35S promoter, were constructed on the binary vector, pCAMBIA1302. The construct was individually or co-transformed to tobacco (Nicotiana tabacum) by Agro-transformation method. Three kinds of transgenic lines were obtained that overexpressed SCR, or WOX3, or NTPHAN and SCR. The transgenic plant of over-expressed WOX3 had upwardly curled leaves caused by disrupting the extension of upper epidermis. Also it had distorted veins and abnormal mesophyll. The transgenic plant of over-expressed SCR had an ectopic leaf from the vein at the abaxial side. Abnormal cell division can be found at some regions of mesophyll. Its leaves had larger ratio of length and width than non-transgenic plants’. The transgenic lines that over-expressed NTPHAN and SCR developed narrower leaves at first and then the leaves expanded but with wave-like edge. Cells in the mesophyll were arranged compactly without adaxial-abaxial polarity. It was also found that in most transgenic plant leaves, the expression of NtPHAV, which promotes the adaxial identity in the development leaf, was enhanced. This result suggests that these three genes involved in development at the different growth stages or in different organs possibly by affecting the expression of leaf developmental genes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:04:24Z (GMT). No. of bitstreams: 1 ntu-96-R94621101-1.pdf: 1968124 bytes, checksum: 98f2d4fcf2a34cc2fbd9a446dcf65ac7 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄..................................i
圖表目錄..................................ii 縮寫對照表................................iii 中文摘要..................................iv 英文摘要..................................vi 壹、前 言..............................1 貳、文獻回顧..............................3 I. 葉片發育之研究.........................3 II. 生長發育相關基因之研究................6 參、材料與方法............................11 I. 試驗材料...............................11 II. 目標基因選殖..........................12 III. 構築持續性表現之載體.................20 IV. 農桿菌轉型............................22 V . 菸草轉殖............................23 VI. 轉殖植株之篩選與分子檢定..............25 VII. 轉殖植株形態觀察.....................28 VIII. 調控葉片極性發育之基因表現..........30 肆、結 果..............................32 I. 基因轉殖載體構築.......................32 II. 轉殖菸草之分析........................33 III. 轉殖菸草之形態.......................34 IV. 轉殖菸草之葉片解剖構造................36 V. 轉殖株向軸極性基因的表現...............39 伍、討 論..............................40 陸、參考文獻..............................47 圖 表..................................53 附 錄..................................83 | |
dc.language.iso | zh-TW | |
dc.title | 大量表現NTPHAN、SCR及WOX3基因於菸草對葉片形態之影響 | zh_TW |
dc.title | Alteration of tobacco leaf morphology by overexpressing NTPHAN, SCR and WOX3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張孟基(Men-Chi Chang) | |
dc.contributor.oralexamcommittee | 黃鵬林(Pung-Ling Huang),王強生(Chan-Sen Wang),洪傳揚(Chwan-Yang Hong) | |
dc.subject.keyword | 葉片形態,NTPHAN,SCR,WOX3,菸草,極性, | zh_TW |
dc.subject.keyword | Leaf morphology,NTPHAN,SCR,WOX3,Tobacco,Polarity, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。