Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28284
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor藍崇文(Lan, Chung-Wen)
dc.contributor.authorPeng Chenen
dc.contributor.author陳芃zh_TW
dc.date.accessioned2021-06-13T00:04:19Z-
dc.date.available2009-07-31
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-29
dc.identifier.citation[1] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki and K. Nakajima, “Growth Behaviors of Polycrystalline Silicon during Melt Growth Process”, Journal of Crystal Growth 266, 441-448, 2004
[2] J.A. Warren, R. Kobayashi, A.E. Lobkovsky and W.C. Carter, “Extending Phase Field Model of Solidification to Polycrystalline Materials”, ACTA Materialia 51
6035-6058, 2003
[3] J.J. Eggleston, G.B. McFadden, and P.W. Voorhees, “A Phase Field Model for Highly Anisotropic Interfacial Energy”, Physica D 150, 91-103,2001
[4] T. Aoyama and K. Kuribayashi, “Influence of Undecoolingon Solid/Liquid Interface Morphology in Semiconductors”, ACTA Materialia 48, 3739-3744, 2000
[5] K. Fujiwara, K. Nakajima, T. Ujihara, N. Usami, G. Sazaki, H. Hasegawa, S. Mizoguchi and K. Nakajima, “In Situ Observations of Crystal Growth Behaviors of Silicon Melt”, Journal of Crystal Growth 243, 275-282, 2002
[6] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki and K. Nakajima, ”In-situ Observation of Melt Growth Behavior of Polycrystalline Silicon”, Journal of Crystal Growth 262, 124-129, 2002
[7] G. Wulff,” Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kris-. Tallflächen”, Z. Krit. 34, 449-530, 1901
[8] W.A. Miller, and G.A. Chadwick, “The Equilibrium Shapes of Small Liquid Droplets in Solid-Liquid Phase Mixtures: Metallic h.c.p. and Metalloid Systems” Proc. Roy. Soc. (London), Ser. A, 312: 257-276, 1969
[9] K.A. Jackson, Liquid Metals and Solidification (ASM Cleveland, 1958), p.174;
Growth and Perfection of crystals, edited by Doremus et al.(Wiley, New York, 1958), p319
[10] R.E. Napolitano, Shan Liu, and R. Trivedi, “Experimental Measurement of Anisotropy in Crystal-Melt Interfacial Energy”, Interface Science 10, 217-232, 2002
[11] W.W. Mullins, “Theory of Thermal Grooving”, Journal of Applied Physics 28, 333-339, 1957
[12] W.W. Mullins, “Solid Surface Morphologies Governed by Capillarity”, In: Metal Surfaces. Metals Park, Ohio, Am Soc Metals, 17, 1963
[13] H. Wong, M.J. Miksis, P.W. Voorhees and S.H. Davis, “Capillarity driven motion of solid film wedges”, Acta Materialia 45, 2477-2484, 1997
[14] B.A. Rustwick, “Direct Measurement of Anisotropy of Interfacial Energy from Grain Boundary Groove Morphology in Transparent Organic Metal Analogs System”, Master Thesis, Iowa Univ., 2005
[15] L. Klinger, and E. Rabkin, “Effect of Surface Anisotropy on Grain Boundary Grooving”, Interface Science 9, 55-63,2001
[16] T. Xin, and H. Wong,”Grain-Boundary Grooving by Surface Diffusion with Strong Surface Energy Anisotropy”, Acta Materialia 51, 2305-2317,2003
[17] A. Ramasubramaniam, and V.B. Shenoy, “On the Evolution of Faceted Grain Boundary Grooves by Surface-Diffusion”, Acta Materalia 53, 2943-2956,2005
[18] C. Herring, The Physics of Powder Metallurgy, McGraw-Hill 1951, p143
[19] L.H. Ungar and R.A. Brown, “Cellular Interface Morphologies in Directional Solidification: I. The One-Sided Model”, Physical Review B 29, 1367-1380, 1984
[20] K. Tsiveriotis and R.A. Brown, “Solution of Free-Boundary Problems using Finite-Element/Newton Methods and Locally Refined Grids: Application to Analysis of Solidification Microstructure”, International Journal for Numerical Methods in Fluids, 16, 827-843, 1993
[21] A. Schmidt,” Computation of Three Dimensional Dendrites with Finite Elements”, Journal of Computational. Physics 125, 293-312, 1996
[22] M. Sussman, P. Smereka and S. Osher, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow”, Journal of Computational. Physics 114, 146-159, 1994
[23] M. Sussman, A.S. Almgren, J.B. Bell, L.H. Howell and M.L. Welcome, “ An Adaptive Level Set Approach for Incompressible Two-Phase Flows”, Journal of Computational. Physics 148, 81-124, 1999
[24] Y.T. Kim, N. Goldenfeld and J. Dantzig, “Computation of Dendritic Microstructures Using a Level Set Method “, Physical Review E 62, 2471-2474, 2000
[25] W.J. Bottinger, J.A. Warren, C. Beckermann and A. Karma, “Phase-Field Simulations of Solidification”, Annual Review of Materials Research 32, 164-194, 2002
[26] M. Ode, S.G. Kim and T. Suzuki, “Recent Advances in the Phase-field Model for Solidification”, ISIJ International 41, 1076-1082, 2001
[27] S.M. Allen and J.W. Cahn, “A Microscope Theory for Antiphase Boundary Motion and its Application to Antiphase Domain Coarsening “, Acta Metallurgica 27, 1085-1095, 1979
[28] J.S. Langer, in directions in condensed matter physics, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore), 1986
[29] G. Caginalp and P. Fife, “Phase-field Methods for Interfacial Boundaries”, Physical Review B 33, 7792-7794, 1986
[30] G. Caginalp and P. Fife, “Higher-order Phase Field Models and Detailed Anisotropy “, Physical Review B 34, 4940-4943, 1986
[31] R. Kobayashi, Numerical Approach to Three-Dimensional Dendritic Solidification, Experimental Mathematics 3 (1), 59-81, 1994
[32] S.L. Wang. R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Brown and G.B. McFadden, “Thermodynamically-Consistent Phase-Field Models for Solidification”, Physica D 69, 189-200, 1993
[33] A.A. Wheeler, B.T. Murray and R.J. Schaefer, “Computation of dendrites using a phase field model”, Physica D 66, 243-262, 1993
[34] B. Morin, K.R. Elder, M. Sutton, and M. Grant,” Model of the Kinetics of
Polymorphous Crystallization “, Physical Review Letters 75, 2156-2159, 1995
[35] I. Steinbach, F. Pezzola, B. Nestler, M. Sesselberg, R. Prieler, G.J. Schmitz, and L.L. Rezende, “A Phase Field Concept for Multiphase Systems”, Physica D 94, 135-147, 199
[36] S.G. Kim, W.T. Kim, T. Suzuki, and M. Ode, “Phase-Field Modeling of Eutectic Solidification”, Journal of Crystal Growth 261, 135-158, 2004
[37] B. Nestler, and A.A. Wheeler, “Multi-phase-field Model of Eutectic and Peritectic Alloys: Numerical Simulation of Growth Structures “, Physica D 138, 114-133, 2000
[38] R. Kobayashi, J.A. Warren, and W.C. Carter, “Vector-valued phase field model for crystallization and grain boundary formation”, Physica D 119, 415-423, 1998
[39] R. Kobayashi, J.A. Warren, and W.C. Carter, “A continuum model of grain boundaries”,Physica D 140, 141-150, 2000
[40] R. Kobayashi, J.A. Warren, and W.C. Carter, “Modeling Grain Boundaries Using Phase-Field Technique”, Journal of Crystal Growth 211, 18-20, 2000
[41] L. Granasy, T. Borzsonyi, and T. Pusztai, “Nucleation and Bulk Crystallization in Binary Phase Field Theory”, Physical Review Letters 88, 206105, 2002
[42] L. Granasy, T. Borzsonyi, and T. Pusztai, “Crystal Nucleation and Growth in Binary Phase Field Theory”, Journal of Crystal Growth 237, 1813-1817, 2002
[43] L. Granasy, T. Borzsonyi, and T. Pusztai, “Phase Field Theory of Heterogeneous Crystal Nucleation”, Physical Review Letters 98 , 035703, 2007
[44] R. Kobayashi, “Modeling and Numerical Simulations of Dendritic Crystal Growth”, Physica D 63, 410-423, 1993
[45] J.M. Debierre, A. Karma, F. Clelestini, and R. Guerin, “Phase-field Approach for Faceted Solidification”, Physical Review E 68, 041604, 2003
[46] T. Uehara, and R.F. Sekerka, “Phase-field Simulations of Faceted Growth for Strong Anisotropy of Kinetic Coefficient”, Journal of Crystal Growth 254, 251-261, 2003
[47] A.A.Wheeler, W.J. Boettinger, and G.B. McFadden, “Phase-field Model for Isothermal Phase Transitions in Binary Alloys”, Physical Review A 45, 7424-7439, 1992
[48] C.M. Bishop, M. Tang, R.M. Cannon, and W.C. Carter, “Continuum Modeling and Representations of Interfaces and Transitions in Materials”, Materials Science and Engineering A 422, 102-114, 2006
[49] M. Tang, W.C. Carter, and R.M. Cannon, “Diffuse Interface Model for Structural Transitions of Grain Boundaries”, Physical Review B 73, 024102,2006
[50] N. Provatas, N. Goldenfeld and J. Danzig, “Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures”, Journal of Computational Physics 148, 265-290, 1999
[51] N. Provatas, N. Goldenfeld and J. Danzig, “Efficient Computation of Dendritic Microstructures Using Adaptive Mesh Refinement “, Physical. Review Letters 80, 3308-3311, 1998
[52] R. Tonhardt and G. Amberg, “Dendritic Growth of Randomly Oriented Nuclei in a Shear Flow “, Journal of Crystal Growth 213, 161-187, 2000
[53] R.J. Braun and B.T. Murray, Adaptive Phase-field Computations of Dendritic Crystal Growth, Journal of Crystal Growth 174, 41-53, 1997
[54] J.H. Jeong, N. Goldenfeld and J Danzig, “Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow”, Physical Review E 64, 041602, 2002
[55] C.C. Liu, ”Adaptive Finite Volume Methods for Solidification Problems”, Master Thesis, National Taiwan University, 2000
[56] C.M. Hsu, “Adaptive Phase Field Simulation of Dendritic Crystal Growth in a Forced Flow”, Master Thesis, National Taiwan University, 2001
[57] C.W. Lan, C.C. Liu and C.M. Hsu, “An Adaptive Finite Volume Method for Incompressible Heat Flow Problems in Solidification”, Journal of Computational. Physics 178, 464-497, 2002
[58] S.R. Murray and J.Y. Murthy, “A Pressure-Based Method for Unstructured Meshes”, Numerical Heat Transfer. Part B 31, 195-215, 1996
[59] P.W. Voorhees, S.R. Coriell, and G.B. McFadden, “The Effect of Anisotropic Surface Tension on Grain Boundary Groove Morphology”, Journal of Crystal Growth 67, 425-440, 1984
[60] R.F. Sekerka, “Role of Instabilities in Determination of the Shapes of Growing Crystals”, Journal of Crystal Growth 128, 1-12,1993
[61] K.M. Beaty, and K.A. Jackson, “Monte Carlo Modeling of Silicon Crystal Growth”, Journal of Crystal Growth 211, 13-17, 2000
[62] K.A. Jackson, “The Interface Kinetics of Crystal Growth Process”, Interface Science 10, 159-169, 2002
[63]D. Li and D.M. Herlach, “High Undercooling of Bulk Molten Silicon by Containerless Processing”, Europhysics Letters 34,423-428, 1996
[64] H. Kasajima, E. Nagano, T. Suzuki, S.G. Kim, and W.T. Kim, “Phase-Field Modeling for Facet Dendrite Growth of Silicon”, Science and Technology of Advanced Materials 4, 553-557, 2003
[65] R.P. Liu, T. Volkmann, and D.M. Herlach, “Undercooling and Solidification of Si by Electromagnetic Levitation”, Acta Materialia 49, 439-444, 2001
[66] T. Aoyama, K. Kuribayashi, “Rapid Solidification Processes of Semiconductors from Highly Undercooled Melts”, Materials Science Engineering A 304, 231-234, 2001
[67] F. Hausser, and A. Voigt, “Facet Formation and Coarsening Modeled by a Geometric Evolution Law for Epitaxial Growth “, Journal of Crystal Growth 275, e47-e51, 2005
[68] T. Takaki, T. Hasebe, and Y. Tomita,”Two Dimensional Phase-Field Simulation of Self-Assembled Quantum Dot Formation”, Journal of Crystal Growth 287, 495-499, 2006
[69] G.B. McFaddden, A.A. Wheeler, R.J. Braun ,S.R. Coriell and R.F. Sekerka, “Phase-Filed Models for Anisotropic Interfaces”, Physical Review E 48,2016-2024,1993
[70] H.A. Atwater, C.V. Thompson, and H.I. Smith, “Mechanisms for Crystallographic Orientation in the Crystallization of Thin Silicon Films from the Melt”, Journal of Material Research. 3 (6), 1232-1237, 1988
[71] Klara Grönhagen and John Ågren, “Grain-boundary Segregation and Dynamic Solute Drag Theory—A Phase-field Approach”, Acta Materialia 55, 955-960, 2007
[72] L. Granasy, T. Borzsonyi, and T. Pusztai,, Hand Book of Theoretical and Computational Nanotechnology, edited by M. Rieth and W. Schommers, American Scientific Publishers Steven Ranch, vol. 9 , 525-572, 2006
[73] R. Kobayashi, and J.A. Warren, “Modeling the Formation and Dynamics of Polycrystals in 3D”, Physica A 356, 127-132, 2005
[74] L. Granasy, T. Borzsonyi, and T. Pusztai, “Phase Field Modeling of Polycrystalline Freezing”, Materials Science and Engineering A 413, 412-417, 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28284-
dc.description.abstract在光電產業中,多晶矽(poly-Si) 被廣泛地使用在製作太陽能電池的材料上,然而,由於多晶物質裡的晶界密度(grain boundary density) 將會影響太陽能電池的能量儲蓄的效率,當密度越高時越不利於能源的儲存。因此過多的晶界是不被期望的,如何藉由減少多晶塊材上的晶界分布來提升電池的效率也就成為了一個重要的課題。一般而言,控制晶體生長的環境藉以改良材料品質是最常使用的方式,而電腦模擬則提供了一個相當容易的方法來探討控制晶體生長的因素。在本論文中,我們使用由Warren等人所發展出的多晶相相場模式(polycrystalline phase field model)並結合由Eggleston所提出模擬小面生長(faceted growth)的相場模式,首次用以探討多晶矽在不同過冷度下的熔體生長行為。根據Fujiwara等人所進行的矽晶粒競爭生長實驗,當過冷度很小時,生長出的多晶矽中,(111)晶向的矽晶占了大多數;然而在過冷度較大時,(100)晶向的矽晶則為多數。這其中,晶粒選擇的機制扮演了很重要的角色。
根據Fujiwara等人的解釋,低過冷時晶粒選擇的機制主要取決於界面能效應;而在高過冷方面,根據Atwater等人的解釋,則由動力學效應主導。在我們的相場模擬結果上,我們能夠得到與實驗上相似的生長行為與界面形狀。此外,由我們在定性上的分析得知,晶粒選擇的機制主要是由界面能效應與動力學效應兩種不同的效應競爭的結果,過冷度則為調整動力學效應的控制變因。這些結論與Fujiwara和Atwater在解釋矽晶粒的選擇機制上,具有良好的一致性。
zh_TW
dc.description.abstractIn photovoltaic industry, polycrystalline silicon (poly-Si) is widely used as the material to manufacture the solar cell. However, the energy conservation of the solar cell is usually affected by the grain boundary density in the poly-Si due to the grain boundary will act as the photo-carrier in the cell. Thus, to decrease the grain boundary density is crucial to produce good quality poly-Si for solar cell. In general, the crystal growth environment will affect the quality of the crystal, and the computational simulation is used for studying the growth dynamics of the crystal.
In this thesis, we combine the polycrystalline phase field model proposed by Warren et al., with the highly anisotropic surface energy phase field model proposed by Eggleston et al. to study the growth behaviors of the polycrystalline silicon under different undercooling of the melt. According to the experimental observations from Fujiwara et al, when the undercooling is low enough, the (111) silicon will be the dominant orientation in the polycrystalline silicon. As the undercooling becomes much higher, the (100) will be the dominant orientation. To explain the behaviors, the mechanism of the grain selection between grains is the key to elucidate the whole problem.
According to Fujiwara et al., when the undercooling is low enough, the effect of the surface energy will dominate the grain selection mechanism. For the higher undercooling case, Atwater et al. explained that the kinetics effect will dominate the growth. In our simulations, we can reproduce the similar growth behaviors and morphologies from the experiments. Beside, from our qualitative analysis of the growth behaviors, the mechanism of the grain selection is mainly caused by the competition between the effect of the surface energy and the kinetic effect, and the undercooling serves as a factor to control the relative strength of the kinetic effect. In explaining the competitive growth behaviors of silicon, our conclusion shows good agreement with the explanations by Fujiwara et al. and Atwater et al.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:04:19Z (GMT). No. of bitstreams: 1
ntu-96-R94524041-1.pdf: 3100587 bytes, checksum: 8a6cdeb17d67d77275f5be91e8a65697 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Contents
Abstract(Chinese)…………………………………………… Ⅰ
Abstract(English)…………………………………………… Ⅱ
Table of Contents ………………………………………… III
Nomenclature …………………………………………………Ⅴ
List of Tables ………………………………………………Ⅷ
List of Figures ………………………………………………Ⅸ
Chapter 1 Introduction ……………………………………………1
1.1 Motivation of the Research………………………………… 1
1.2 Literature Review………………………………………………3
The Melt Growth Behaviors of Silicon……………………3
1.2.2 Fundamental theory of crystal growth……………………8
Theory of Solidification………………………………8
Faceted Growth……………………………………………9
Grain Boundary Groove…………………………………10
1.2.3 Modeling of solidification process……………………13
Front-Tracking Method…………………………………13
Level Set Method……………………………………… 14
Phase Field Method………………………………………15
Chapter2 Phase Field Model and Numerical Method …………17
2.1 Phase Field Model …………………………………………… 17
Polycrystalline Phase Field Model……………………………20 Anisotropy………………………………………………………………22
2.2 Derivation of the Phase Field Model ……………………24
2.3 Numerical Method…………………………………………………28
Adaptive Mesh Refinement (AMR)………………………………28
Finite Volume Method (FVM)……………………………………30
Numerical Scheme for Orientation Field Equation…………33
2.4 Dimensionless Equations………………………………………35
Chapter 3 Results and Discussions ……………………………37
3.1 Validation of the Phase Field Model ……………………37
3.1.1 Force Balancing at Junctions……38
3.1.2 Equilibrium Shape of the Crystal…………………………44
3.2 Phase Field Modeling of Silicon……………………46
3.2.1 Grain Boundary Groove………………48
Comparison of the Dihedral Angle………49
Comparison of Anisotropic Grain Boundary Groove…52
3.2.2 Competitive Growth of Silicon……………………………55
Morphology Evolution of Silicon……………………59
Analysis of the Growth for the Undercooling is 1.685K……63
Analysis of the Growth for the Undercooling is 6.74K……68
Chapter4 Conclusions and Future Directions …………………75
Bibliography …………………………………………………………77
dc.language.isoen
dc.subject熔體生長zh_TW
dc.subject相場模式zh_TW
dc.subject多晶矽zh_TW
dc.subject晶體競爭生長機制zh_TW
dc.subjectPhase-Field Modelen
dc.subjectMelt Growthen
dc.subjectPolycrystalline Siliconen
dc.subjectCompetitive Growth Mechanismen
dc.title相場模式在多晶矽生長行為之研究zh_TW
dc.titlePhase Field Modeling of Growth Behaviors of Polycrystalline Siliconen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正陽(Jeng-yang Chang),陳志臣(Jyh- Chen Chen),高振宏(Cheng-Heng Kao)
dc.subject.keyword相場模式,熔體生長,多晶矽,晶體競爭生長機制,zh_TW
dc.subject.keywordPhase-Field Model,Melt Growth,Polycrystalline Silicon,Competitive Growth Mechanism,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
3.03 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved