Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉麗飛(Li-Fei Liu)
dc.contributor.authorChiu-Ping Liuen
dc.contributor.author劉秋萍zh_TW
dc.date.accessioned2021-06-13T00:04:14Z-
dc.date.available2007-07-31
dc.date.copyright2007-07-31
dc.date.issued2006
dc.date.submitted2007-07-28
dc.identifier.citationAo X.L. and Lehrer S.S. (1995). Phalloidin unzips nebulin from thin filaments in skeletal myofibrils. J. Cell Sci.108, 3397-4303.
Bart G., den Boer B.GW., and Murray J.A.H. (2000). Triggering the cell cycle in plants. Trends Cell Biol.10, 245-250.
Beemser G.T.S., De Veyder L., Vercruysse S., West G., Rombaut D., Van Hummelen P., Galichet A., Gruissem W., Inze D., and Vuylsteke M. (2005). Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol. 138, 734-743.
Bell M.H., Halford N.G., Ormrod J.C., and Francis D. (1993). Tobacco plants transformed with cdc25, a mitotic inducer gene from fission yeast. Plant Mol. Biol. 23, 445-451.
Boudolf V., Inze D. and De Veylder L. (2006). What if higher plants lack a CDC25 phosphatase? Trends Plant Sci. 11, 474-479.
Cockcroft C.E., den Boer B.G., Healy J.M., and Murray J.A. (2000). Cyclin D control of growth rate in plants. Nature 405, 575-579.
De Veylder L., Segers G., Glab N., Casteels P., Van Montagu M., Inze D. (1997). The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Lett. 412, 446-452.
den Boer B.G.W. and Murray J. A.H. (2000). Control of plant growth and development through manipulation of cell-cycle genes. Curr. Opin. Biotechnol.11, 138-145.
Dewitte W. and Murry J.A.H. (2003). The plant cell cycle. Annu. Rev. Plant Biol. 54, 235-264.
Dewitte W., Riou-Khamlichi C., Scofield S., Healy J.M., Jacqmard A., Kilby N.J., Murray J.A. (2003). Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15, 79-92.
Dolezel J. and Bartos J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99-110.
Duan G.L., Zhou Y., Tong Y.P., Mukhopadhyay R., Rosen B.P. and Zhu Y.G. (2006). A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 174, 311-321.
Fabian-Marwedel T., Umeda M., and Sauter M. (2002). The rice cyclin-dependent kinase-activating kinase R2 regulates S-phase progression. Plant Cell 14, 197-210.
Fantes P. and Beggs J. (2000). The Yeast Nucleus. Front. Mol. Biol.33, 1-272.
Ferral S. (2006). Protein kinases controlling the onset of mitosis. Cell Mol. Life Sci. 63, 781-795.
Francis D. (2007). The plant cell cycle-15 years on. New phytol. 174, 261-278.
Furnari B., Rhind N., and Russell P. (1997). Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Sci. 277, 1495-1497.
Futcher B. (1999). Cell cycle synchronization. Methods Cell Sci. 21, 79-86.
Givan A.L. (2001). Flow cytometry: first principle 2nd Ed. Wiley-Liss.
Hartwell L.H., Culotti J., Pringle J., and Reid B.J. (1974). Genetic control of the cell division cycle in yeast. Sci. 183, 46-51.
Hata S. (1991). cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice. FEBS Lett. 1, 149-152.
He S.S., Liu J., Xie Z., O’Neill D., Dotson S. (2004). Arabidopsis E2Fa plays a bimodal role in regulating cell division and cell growth. Plant Mol. Biol. 56, 171-184.
Hemerly A., de Almeida E. J., Bergounioux C., Van Montagu M., Engler G., Inze D., and Ferreira P. (1995). Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO (Eur. Mol. Biol. Organ.) J. 14, 3925–3936.
Hemerly A.S., Ferreira P., de Almeida E. J., Van Montagu M., Engler G.., and Inze D. (1993). Cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5, 1711–1723.
Hemerly A.S., Ferreira P.C., Van Montagu M., Engler G., and Inze D. (2000). Cell division events are essential for embryo patterning and morphogenesis: Studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J. 23, 123–130.
Hemerly A.S., Ferreira P.C.G., Montagu M.V., and Inze D. (1999). Cell cycle control and plant morphogenesis: is there an essential link? BioEssays 21, 29-37.
Horsch R.B., Fry J.E., Hoffmana N.L., Eichholtz D., Rogers S.G. and Fraley R.T. (1985) A simple and general method for transferring genes into plants. Sci. 227, 1229–1231.
Jefferson R.A., Kavanagh T.A., and Bevan M.W. (1987). GUS fusion: β-glucuronidase as a ensitive and versatile gene fusion marker in higher plants. The EMBO (Eur. Mol. Biol. Organ.) J. 6, 3901-3907.
Kosugi S. and Oashi Y. (2002). Interaction of the Arabidopsis E2F and DP proteins confers their conconmitant nuclear translocation and transactivation. Plant Physiol. 128, 833-843.
Kumer S. and Fladung M. (2001). Controlling transgene integration in plants. Trends Plant Sci. 6, 155-199.
Landrieu I., da Costa M., De Veylder L., Dewitte F., Vandepoele K., Hassan S., Wieruszeski J.M., Corellou F., Faure J.D., Van Montagu M., Inze D., and Lippens G. (2004). A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 101, 13380–13385.
Lee, J., Das A., Yamaguchi M., Hashimoto J., Tsutsunimi N., Uchimiya H., and Umeda M. (2003). Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J. 34, 417-425.
Lessard P.A., Kulaveerasingam H., York G.M., Strong A. and Sinskey A.J. (2002). Manipulating gene expression for the metabolic engineering of plants. Metab. Eng. 4, 67-79.
Lloyd C. and Chan J. (2006). Not so divided: the common basis of plant and cell division. Nat. Rev. Mol. Cell Biol. 7, 147-151.
Magyar Z., Meszaros T., Miskolczi P., Deal M., Feher A., Brown S., Kondorosi E., Athanasiadis A., Pongor S., Bilgin M., Bako L., Koncz C., and Dudits D. (1997). Cell cycle phase specifity of putative cyclin- dependent kinase variants in synchronized Alfalfa cells. Plant Cell 9, 223-235.
Masubelele N.H., Dewitte W., Menges M., Maughan S., Collins C., Huntely R., Nieuwland J., and Murray J.A.J. (2005). D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 102, 15694-15699.
Meeting report. (2002). 'Cross-talk' between cell division cycle and development in plants. Plant Cell 14, 11-16.
Menges M., De Jager S.M., Gruissem W., and Murray J.A.H. (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiples and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J. 41, 546-566.
Menges M., Hennig L., Gruissem W., and Murray J.A.H. (2002). Cell cycle-regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41987-42002.
Menges M., Hennig L., Gruissem W., and Murray J.A.H. (2003). Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol. Biol. 53, 423-442.
Meyers B.C., Galbraith D.W., Nelson T., and Agrawal V. (2004). Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol. 135, 637-652.
Mironov V., De Veylder L., Montagu M.V., and Inze D. (1999). Cyclin-dependent kinases and cell division in plants-the nexus. Plant Cell 11, 509-521.
Nakagami H., Kawamura K., Sugisaka K., Sekine M., Shinmyo A. (2002). Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14, 1847-1857.
Napoli C., Lemieux C., and Jorgenden R. (1990). Introduction of a chimeric chalcon synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-289.
Orchard C.B., Siiliano I., Sorrell D.A., Marchbank A., Rogers H.J., Francis D., Herbert R.J., Suchomelova P., Lipavska H., Azmi A., and Van Onckelen H. (2005). Tobacco BY-2 cells expressing fission yeast cdc25 bypass a ZG2/M block on the cell cycle. Plant J. 44, 290-299.
Pines J. (1995). Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 66, 181-212.
Porceddu A., Stals H., Reichheld J.P., Segers G., De Veylder L., Barroco R.P., Casteels P., Van Montagu M., Inze D., and Mironov V. (2001). A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. Plant Cell 276, 36354-36360.
Ramirez-Parra E., Desvoyes B., and Gutierrez C. (2005). Balance between cell division and differentiation during plant developmet. Int. J. Dev. Biol. 49, 467-477.
Ramirez-Parra E., Xie Q., Boniotti M.B., Gutierrez C. (1999). The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G1/S regulatiors. Nucleic Acids Res. 27, 3527-3533.
Riou-Khamlichi C., Menges M., Healy J.M., and Murray J.A.H. (2000). Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell Biol. 20, 4513-4521.
Rossi V. and Varotto S. (2002). Insights into the G1/S transition in plants. Planta 215, 345-356.
Rossignol P., Steven R., Perennes C., Jasinski S., Cella R., Tremousaygue D., and Bergounioux C. (2002). AtE2F-a and AtDP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol. Genet. Genomics 266, 995-1003.
Rusell P. and Nurse P. (1986). Cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145-153.
Sambrook J., Fritsch E.F., and Maniatis T. (1989). Molecular cloning: a laboratory manual ed.2. Cold Spring Habor Lab. Press USA. 5, 72.
Schmidt E.V. (1999). Coordination of cell groeth with cell division. Curr. Opin. Genet. Dev. 9, 76-80.
Shen W.H. (2002). The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci. 7, 505-511.
Shimotono A., Ohno R., Bisova K., Sakaguchi N., Huang J., Koncz C., Uchimiya H., and Umeda M. (2006). Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase activating kinases in Arabidopsis. Plant J. 47, 701-710.
Sorrell D.A., Chrimes D., Dickinson J.R., Roger H.J., and Francis D. (2005). The Arabidopsis CDC25 induces a short cell length when over expressed in fission yeast: evidence for cell cycle function. New Phytol. 165, 425-428.
Stevens C. and La Thangue N.B. (2003). E2F and cell cycle control: a double-edged sword. Arch. Biochem. Biophys. 412, 157-169.
Suchomelova P., Velgova D., Masek T., Francis D., Roger H.J., Marchbank A.M., and Lipavsla H. (2004). Expression of the fission yeast cell cycle regulator cdc25 induces de novo shoot formation in tobacco: evidence of a cytokinin-like effect by this mitotic activator. Plant Physiol. Biochem. 42, 49-55.
Umeda M., Shimotohno A., and Yamaguchi M. (2005). Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Plant Cell Physiol. 9, 1437-1442.
Van’t Hof J. (1966). Experimental control of DNA synthesis and dividing cells in excised root tips of Pisum. Am. J. Bot. 53, 970–976.
Van’t Hof J. (1973). The regulation of cell division in higher plants. Brookhaven Symp. Biol. 25, 152-165.
Vandepoele K., Raes J., De Veylder L., Rouze P., Rombauts S., and Inze D. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903-916.
Van't Hof J., and Kovacs C.J. (1972). Mitotic cycle regulation in the meristem of cultured roots: The principal control point hypothesis. Adv. Exp. Med. Biol. 18, 15-30.
Wang CK., Chen PY., Wang HM., and To KY. (2006). Cosuppression of tobacco chalcone synthase using Petunia chalcone synthase construct results in white flowers. Bot. Stud. 47, 71-82.
Weingartner M., Pelayo H.R., Binarova P., Zwerger K., Melikant B., de la Torre C., Heberle-Bors E., and Bogre L. (2003). A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. J. Cell Sci. 116, 487–498.
Wellmer F. and Riechmann J.L. (2005). Gene network analysis in plant development by genomic technologies. Int. J. Dev. Biol. 49, 745-759.
Williams S.D., Zhu H., Zhang L., and Bernstein H.S. (2006). Adenoviral delivary of human CDC25 promotes G2/M progression and cell division in neonatal ventricular cardiomyocytes. Gene Ther. 16, 1-7.
Yu, Y., Steinmetz A., Meyer D., Brown S., and Shen W.H. (2003). The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15, 2763-2777.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28280-
dc.description.abstract細胞週期為植物生長發育之重要過程,其中需要諸多重要基因之參與及調控,此些關鍵的調控者,除了參與DNA之複製及細胞分裂外,亦與生長發育過程中訊息的傳遞相關。為了瞭解植物細胞週期調控之機制及植物之生長分化,本試驗利用農桿菌轉殖法,並以CaMV35S啟動子將三個持續性表現的基因 (AtCDC25、AtR2、及OsR2) 轉殖至菸草中,探討此三個與細胞週期調控相關的基因對菸草生長發育及細胞分裂的影響。
試驗結果總計獲得45株轉殖株,包括27株單基因轉殖株,19株雙基因轉殖株,及2株三基因轉殖株;以RT-PCR分析T0代轉殖菸草,50%以上的轉殖株具有基因之表現。外表型方面,T0代轉殖株生長型態與非轉殖株差異不大,少數轉殖株葉緣有向上翻摺的情形,且轉殖株的開花時間有延遲之現象。T0代轉殖株葉片組織切片觀察發現,海綿細胞數目明顯增加,較非轉殖菸草增加約1.5倍以上,且部分轉殖株下表皮細胞數目亦有增加之趨勢;此外,將葉片細胞數對照轉殖株基因表現,可得知基因表現量高的轉殖株,葉片細胞數目增加情形略為明顯,且細胞堆疊排列的程度較為嚴重,尤以三基因組合的轉殖株效果最大;由此證明大量表現AtCDC25 ,AtR2,及OsR2基因可增加細胞的分裂,且使細胞形狀變小;此外,分析T1代轉殖株發芽能力,轉殖株發芽勢及發芽率均較非轉殖株為低。
綜合而言,大量表現AtCDC25 、AtR2、及OsR2三個與細胞週期調控相關的基因,會造成菸草開花時間延遲,細胞分裂的速度加快,細胞變小,並使後代發芽能力降低;而轉殖株外表型變異不大,則可能與擾動細胞週期後,基因本身之互補調控有關。
zh_TW
dc.description.abstractMany essential genes are required to participate in and regulate the progress of cell cycle which is an important process for plant growth and development. These key regulators not only participate in DNA synthesis and cell division but also get involved in the transmission of signals during growth and development. In order to understand the molecular mechanisms in controlling plant cell cycle accompanied with plant growth and development, Agrobacterium - mediated gene transfer method was used to introduce three cell-cycle related genes (AtCDC25, AtR2, and OsR2) which are driven under CaMV35S promoter into tobacco (Nicotiana tobaccum). The effects of these genes on tobacco growth and development were then investigated.
The results showed that totally 45 transgenic tobaccos were obtained, including 27 lines with single gene insertion, 19 lines with two genes insertion, and 2 lines with three genes inserted in tobacco genome. Analysis of the transgene expression in T0 transgenic tobaccos by RT-PCR indicated that there were more than 50% transgenic plants with foreign gene expressed. The phenotypes of T0 transgenic plants showed no obvious variation. However, a few of them displayed aberrant leaves and delayed flowering. Microscopic anatomy analysis of leaf morphology showed that there were 1.5 folds increase in the number of spongy cells in transgenic tobacco; also the cell number of the lower epidermis was increased. In addition, we noticed that transgenic tobacco with high levels of gene expression, especially lines with three genes inserted significantly correlated with much more cell numbers and serious mis-arranged cells in leaf. Our results demonstrated that overexpression of AtCDC25, AtR2, and OsR2 can enhance the cell division and reduce the size of cells. Finally, analysis of the germination ability of T1 transgenic plants suggested that both the germination tendency and germination rate were lower than those of wild type.
Taken together, overexpression of AtCDC25, AtR2, and OsR2 leads to delay of flowering time, increase of cell division rate, reduction of the cell size, and decrease of the germination ability of transgenic tobaccos. The phenotypes of transgenic tobacco were similar to non-transgenic plants. The interpretation for this may be due to the compensatory mechanism in cell cycle after disruption of this process by overexpress of foreign genes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:04:14Z (GMT). No. of bitstreams: 1
ntu-95-R93621102-1.pdf: 1449339 bytes, checksum: e277a9ebb16ca9b97a2c6614aba36845 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄………………………………………………………………………………. I, II
縮寫對照表………………………………………………………………………....III
中文摘要…………………………………………………………………………....IV
英文摘要…………………………………………………….……………….......V, VI
第一章、前言…………………………………………………………………1
第二章、文獻回顧…………………………………………………………………3
第一節、植物細胞週期………………………........……………….………….……3
第二節、細胞週期相關基因表現對植物生長發育的影響……...................………….…5
第三節、G1/S時期的OsR2基因……………………………...........…………….…6
第四節、持續性表現於細胞週期各時期之AtR2基因……………................…………7
第五節、G2/M時期的CDC25與WEE1基因………………………..............………7
第三章、材料與方法……………………………………………………………….... 8
第一節、試驗材料………………….......…………………………………….……8
第二節、基因之釣取…………………………….......……………………….……9
第三節、基因轉殖之質體製備……………………………………..........…………11
第四節、菸草基因轉殖…………………………………………........……………13
第五節、確認基因轉殖菸草插入之基因……………………………............………16
第六節、轉殖菸草基因表現分析…………………………………...........…………18
第七節、基因轉殖菸草之植物葉部形態切片分析…………………...........…………20
第八節、T1代轉殖菸草生長速率測試…………………………...............…………21
第四章、試驗結果…………………………………………………….……..……… 22
第一節、基因釣取……….......……………………………………………………22
第二節、構築質體………….......…………………………………………………23
第三節、轉殖效率……………….......……………………………………………23
第四節、轉殖菸草之確認………………………………........……………………24
第五節、轉殖菸草之生長發育…………………………………..........……………25
第六節、轉殖菸草之基因表現………………………………….........……………25
第七節、轉殖菸草葉片組織之變化……………………………...........……………26
第八節、T1代轉殖菸草種子發芽與幼苗生長特性………………..................………27
第五章、討論................................................................................................................29
參考文獻.................................................................................................................35
圖表..................................................................................................................42
附表..................................................................................................................66
附圖..................................................................................................................69
dc.language.isozh-TW
dc.title大量表現細胞週期相關基因 AtCDC25,AtR2,及OsR2
對菸草生長發育形態之影響
zh_TW
dc.titleEffects of Over-expressing Cell Cycle Related Genes AtCDC25, AtR2, or OsR2 on the Growth and Development of Tobacco ( Nicotiana tabacum L. )en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor張孟基(Men-Chi Chang)
dc.contributor.oralexamcommittee黃鵬林(Pung-Ling Huang),謝旭亮(Hsu-Liang Hsieh),洪傳揚(Chwan-Yang Hong)
dc.subject.keyword細胞週期,菸草:植物生長發育,zh_TW
dc.subject.keywordcell cycle,tobacco:plant growth and development,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved