請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28260完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武 | |
| dc.contributor.author | Sheng-Han Wang | en |
| dc.contributor.author | 王聖翰 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:03:49Z | - |
| dc.date.available | 2017-07-28 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-28 | |
| dc.identifier.citation | 1 Baumhauer JF, Alosa DM, Renstrom AF, Trevino S, Beynnon B. A prospective study of ankle injury risk factors. American Journal of Sports Medicine 1995; 23: 564-570
2 Moore KLaD, A. F. Clinical oriented anatomy., Lipponcott Williams & Wilkins, Philadelphia., 1999. 3 Lorimer KR, Harrison MB, Graham ID, Friedberg E, Davies B. Venous leg ulcer care: how evidence-based is nursing practice? Journal of Wound, Ostomy, & Continence Nursing 2003; 30: 132-142 4 Yeung MS, Chan KM, So CH, Yuan WY. An epidemiological survey on ankle sprain. British Journal of Sports Medicine 1994; 28: 112-116 5 Nordin, Margareta,Frankel, Victor H. Biomechanics of the foot and ankle. , Lipponcott Williams & Wilkins, Philadelphia., 2001. 6 Bowker, P.,Condie, D. N.,Bader, D. L.,Pratt, D. J., Foot orthoses.,Butterworth Heinemann,1993. 7 Valmassy, Ronald L., Clinical Biomechanics of The Lower Extremities, Mosby-Yesr Book, St. Louis,1996. 8 Donatelli M, Scarpinato A, Russo V, Bucalo ML, Terrizzi C, Iraci T, Miceli G, Puglisi S, Bompiani GD. Increase in red cell lactate concentration and its reduction by isologous plasma in NIDDM subjects. Diabetes Research 1990; 15: 33-35 9 Renstrom P, Wertz M, Incavo S, Pope M, Ostgaard HC, Arms S, Haugh L. Strain in the lateral ligaments of the ankle. Foot & Ankle 1988; 9: 59-63 10 Rasmussen O. Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments. Acta Orthopaedica Scandinavica Supplementum 1985; 211: 1-75 11 Johnson EE, Markolf KL. The contribution of the anterior talofibular ligament to ankle laxity. Journal of Bone & Joint Surgery - American Volume 1983; 65: 81-88 12 Siegler S, Lapointe S, Nobilini R, Berman AT. A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. Journal of Biomechanics 1996; 29: 943-947 13 Berns GS, Hull ML, Patterson HA. Implementation of a five degree of freedom automated system to determine knee flexibility in vitro. Journal of Biomechanical Engineering 1990; 112: 392-400 14 Hollis JM. A six-degree-of-freedom test system for the study of joint mechanics and ligament forces. Journal of Biomechanical Engineering 1995; 117: 383-389 15 Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 1983; 105: 136-144 16 Liu W, Siegler S, Techner L. Quantitative measurement of ankle passive flexibility using an arthrometer on sprained ankles. Clinical Biomechanics 2001; 16: 237-244 17 Fujie H, Mabuchi K, Woo SL, Livesay GA, Arai S, Tsukamoto Y. The use of robotics technology to study human joint kinematics: a new methodology. Journal of Biomechanical Engineering 1993; 115: 211-217 18 Mangaleshkar SR, Wildin C, Oni OO, Howard L. The effect of knee flexion angle on knee stiffness values obtained using the Leicester arthrometer.[erratum appears in Injury 1999 Mar;30(2):155]. Injury 1998; 29: 685-687 19 Woo SL, Chan SS, Yamaji T. Biomechanics of knee ligament healing, repair and reconstruction. Journal of Biomechanics 1997; 30: 431-439 20 Ravary B, Pourcelot P, Bortolussi C, Konieczka S, Crevier-Denoix N. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical Biomechanics. 19(5) 2004; 19: 433-447 21 Holden JP, Grood ES, Cummings JF. Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. Journal of Biomechanics 1995; 28: 99-102 22 Herzog W, Archambault JM, Leonard TR, Nguyen HK. Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of Biomechanics 1996; 29: 103-109 23 Hall GW, Crandall JR, Carmines DV, Hale JE. Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of Biomechanics 1999; 32: 203-207 24 Fleming BC, Peura GD, Beynnon BD. Factors influencing the output of an implantable force transducer. Journal of Biomechanics 2000; 33: 889-893 25 Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. Journal of Biomechanics 1998; 31: 519-525 26 Kerkhoffs GM, Blankevoort L, Schreurs AW, Jaspers JE, van Dijk CN. An instrumented, dynamic test for anterior laxity of the ankle joint complex. Journal of Biomechanics 2002; 35: 1665-1670 27 Li G, Most E, DeFrate LE, Suggs JF, Gill TJ, Rubash HE. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. Journal of Biomechanics 2004; 37: 779-783 28 Rudy TW, Livesay GA, Woo SL, Fu FH. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics 1996; 29: 1357-1360 29 Fujie H, Livesay GA, Fujita M, Woo SL. Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of Biomechanics 1996; 29: 1577-1585 30 Livesay GA, Rudy TW, Woo SL, Runco TJ, Sakane M, Li G, Fu FH. Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament. Journal of Orthopaedic Research 1997; 15: 278-284 31 Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research 1997; 15: 285-293 32 Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 2000; 16: 633-639 33 Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. Journal of Orthopaedic Research 2000; 18: 109-115 34 Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. American Journal of Sports Medicine 2001; 29: 226-231 35 Watanabe Y, Scyoc AV, Tsuda E, Debski RE, Woo SL. Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. Journal of Orthopaedic Science 2004; 9: 280-284 36 Debski RE, Sakone M, Woo SL, Wong EK, Fu FH, Warner JJ. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. Journal of Shoulder & Elbow Surgery 1999; 8: 324-329 37 Paul RP. Robot Manipulators: Mathematics, Programming, And Control; TheComputer Control of Robot Manipulators, 1981. 38 Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. Journal of Bone & Joint Surgery - American Volume 1976; 58: 583-594 39 Beat Hintermann , Andreas Boss , Dirk Schafer, Arthroscopic finding in patients with chronic ankle instability, Journal of Biomechanics , 1999. 40徐徹菖。利用工業機械手臂發展關節生物力學測試系統之研究。台灣大學醫工所碩士論文,2005 41 Tohyama H. Beynnon BD. Renstrom PA. Theis MJ. Fleming BC. Pope MH. Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. Journal of Orthopaedic Research. 13(4):609-14, 1995 42 Panjabi MM. Summers DJ. Pelker RR. Videman T. Friedlaender GE. Southwick WO. Three-dimensional load-displacement curves due to forces on the cervical spine. Journal of Orthopaedic Research. 4(2):152-61, 1986. 43 Woo SL. Hollis JM. Adams DJ. Lyon RM. Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. American Journal of Sports Medicine. 19(3):217-25, 1991 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28260 | - |
| dc.description.abstract | 人體關節之生物力學研究通常在評估關節鬆弛度(勁度)及內部各組織的受力分布,雖然目前已有許多方法被使用來量測關節及其內部組織之力學特性,如植入感應器、關節評估儀器、電腦模擬。但由於人體關節運動是屬於多自由度,且組織有幾何及材料的非線性,因此要如何模擬出人體關節實際的受負載情形及運動路徑並量測到內部組織的受力分布一直是生物力學領域中一大挑戰。
因為人體每個關節都具有六個自由度,因此要準確的說明人體運動的狀態的方式,必須也是六個自由度的運動,而本研究所開發的此關節測試系統係利用機械手臂來控制關節的六自由度運動,同時在機械手臂末端效應器上安裝六軸力規以推算得到關節受力,系統之軟、硬體整合及數學運算則是自行開發一控制介面加以統整。本研究除了關節測試系統的架設,亦將利用本實驗室之動作分析系統來驗證距骨再進行採前拉試驗或距骨傾斜測試的相互移動關係,最後透過試體實驗整合至關節測試系統之控制介面,以提供系統更穩定且快速的控制程序。並由試體實驗的結果驗證關節控制系統及控制方法之可行性。 此系統在生物力學的應用方面主要有兩大功能。分別是可以量得關節在力量控制下的運動軌跡,觀點近似於臨床上的理學檢查。以及執行重複關節運動路徑時,可同時量得該運動路徑下的關節受力。進而利用力學的疊加定理求得關節內部組織的原位力。因此,以機械手臂發展關節測試系統以精確量測關節之運動學及力動學資料,將有助於了解關節的鬆弛度(勁度)表現及內部組織在關節運動中的功能與貢獻。 | zh_TW |
| dc.description.abstract | Biomechanical studies of human joints often aim at determining the joint stiffness and the contribution of the soft tissues in terms of load and strain. Many methodologies have been applied to measure the mechanical properties of those tissues, e.g. implanted transducer, arthrometer, computer modelling. Nevertheless, it remains difficult to simulate the loading conditions applied to the joints since joint motion is multi-degree-of-freedom and joint is geometrically and materially nonlinear. The purpose of this study is to develop a Robot-based Joint Testing System(RJTS)and integrate motion analysis system.
Prior to the testing of human joints, computer simulation and animal experiment were executed to facilitate the development of the RJTS.The robotic manipulator can control the joint motion accurately and combine a 6-axis load cell mounted on the end effector of robot to measure loads. In order to integrate the RJTS, an interface coded in Visual Basic was developed to perform the 6-DOF position/force-moment control. Moreover, it was integrated into the RJTS interface for in vitro experiment. To measure the path of joint motion under specific loads and to reproduce a path combining the measurement of simultaneous loads are the two mainly functions of RJTS. Since RJTS is capable of measuring the kinematic and kinetic data of joints accurately and the in situ forces of soft tissues by the principle of superposition, which is helpful to measure the joint stiffness and understand the function and mechanical contribution of soft tissues. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:03:49Z (GMT). No. of bitstreams: 1 ntu-96-R94548007-1.pdf: 3774724 bytes, checksum: 593115a96d4cf357e9a1a092043ae6be (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 表目錄 VII 圖目錄 VIII 第壹章 簡介 1 第一節 研究動機 1 第二節 踝關節之功能解剖構造 2 一、 骨骼系統: 2 二、 韌帶組織: 6 三、 肌肉組織: 7 四、 內翻性踝關節扭傷之傷害機轉和分類: 8 第三節 文獻回顧 9 一、 關節勁度之評估 9 二、 量測韌帶受力的方法 12 三、 機器手臂/六軸力規測試系統 13 第四節 研究目的 15 第貳章 實驗設備與材料 16 第一節 硬體 16 第二節 軟體 20 一、 系統控制介面 20 第三節 試體實驗 21 第四節 驗證實驗 22 第參章 控制理論與實驗流程 24 第一節 座標系統之定義 24 第二節 踝關節運動及關節角度、位移之定義 27 第三節 關節的位置控制 28 一、 局部座標系統微小運動之數學推導 28 二、 局部座標系統經微小運動後之齊次轉換矩陣 32 三、 關節微小運動之控制 32 第四節 關節的力量控制 34 一、 機器人學理論之應用 34 二、 關節力量之轉換 36 三、 順從矩陣之決定以控制關節力量 36 第五節 關節位置和力量的混合控制 38 第六節 控制方法之介紹 38 一、 混合式控制加力量控制 39 第七節 實驗步驟 40 第肆章 結果與討論 41 第一節 驗證機械手臂量測關節力量前拉測試可行性 41 第二節 驗證距骨重覆移動路徑的比較 42 第三節 量測踝關節試體所得的資料分析 44 一、 關節中性位置之決定 44 二、 關節力量控制下之前拉測試軌跡 45 三、 關節力量控制下之距骨傾斜測試軌跡 48 四、 剪斷前距腓韌帶關節力量控制下之前拉測試軌跡比較 51 五、 剪斷前距腓韌帶關節力量控制下之距骨傾斜測試軌跡比較 55 第四節 討論 59 第伍章 總結 61 甲、 結論 61 乙、 未來方向 62 附錄A、雅可比轉換矩陣之推導 64 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鬆弛度 | zh_TW |
| dc.subject | 人體關節 | zh_TW |
| dc.subject | 生物力學 | zh_TW |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | 關節測試系統 | zh_TW |
| dc.subject | Robotic | en |
| dc.subject | Human joint | en |
| dc.subject | Laxity | en |
| dc.subject | Arthrometer | en |
| dc.subject | Biomechanics | en |
| dc.title | 利用工業機械手臂測試系統量測試體踝關節生物力學之研究 | zh_TW |
| dc.title | In Vitro Measurement of Ankle Joint Biomechanics Using the Robot-Based Testing System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴達明,王至弘,陳文斌 | |
| dc.subject.keyword | 人體關節,生物力學,機械手臂,關節測試系統,鬆弛度, | zh_TW |
| dc.subject.keyword | Human joint,Biomechanics,Robotic,Arthrometer,Laxity, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
