請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28249完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武 | |
| dc.contributor.author | Shih-Jung Hsu | en |
| dc.contributor.author | 許時榮 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:03:34Z | - |
| dc.date.available | 2017-07-28 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-28 | |
| dc.identifier.citation | Adams, L.P., et al., Analysis of motion of the head. Spine, 1994. 19(3): p. 266-71.
Alund, M. and S.E. Larsson, Three-dimensional analysis of neck motion. A clinical method. Spine, 1990. 15(2): p. 87-91. Amevo, B.,et al., Instantaneous axes of rotation of the typical cervical motion segments:I.an empirical study of technical errors.Clinical Biomechanics, 1991. 6:p. 31-37. Amevo, B., et al., Instantaneous axes of rotation of the typical cervical motion segments:II.optimization of technical errors.Clinical Biomechanics, 1991. 6:p. 38-46. Amevo, B.,et al., Instantaneous axes of rotation of the typical cervical motion segments:a study innormal volunteers.Clinical Biomechanics, 1991. 6:p. 111-117. Andreoni, G., M. Rabuffetti, and A. Pedotti, Kinematics of head-trunk movements while entering and exiting a car. Ergonomics, 2004. 47(3): p. 343-59. Asano, T., M. Akagi, and T. Nakamura, The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty, 2005. 20(8): p. 1060-7. Asano, T., et al., In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res, 2001(388): p. 157-66. Azmi, H. and R.P. Schlenk, Surgery for postarthrodesis adjacent-cervical segment degeneration. Neurosurg Focus, 2003. 15(3): p. E6. Baltzopoulos, V., A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin Biomech (Bristol, Avon), 1995. 10(2): p. 85-92. Banks, S.A. and W.A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng, 1996. 43(6): p. 638-49. Dvorak, J., et al., Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine, 1988. 13(7): p. 748-55. Eck, J.C., et al., Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine, 2002. 27(22): p. 2431-4. Frobin, W., et al., Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults. Clin Biomech (Bristol, Avon), 2002. 17(1): p. 21-31. Hilibrand, A.S. and M. Robbins, Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J, 2004. 4(6 Suppl): p. 190S-194S. Hoff, W.A., et al., Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech (Bristol, Avon), 1998. 13(7): p. 455-472. Ishii, T., et al., Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine, 2004. 29(7): p. E139-44. Ishii, T., et al.,Kinematics of the subaxial spine in rotation in vivo three-dimensional analysis.Spine, 2004. 29(24): p. 2826-2831. Ishii, T., et al., Kinematics of the cervical spine in lateral bending in vivo three-dimensional analysis.Spine, 2006. 31(2): p. 155-160. Li, G., T.H. Wuerz, and L.E. DeFrate, Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng, 2004. 126(2): p. 314-8. Lu, T.W. and J.J. O'Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech, 1999. 32(2): p. 129-34. Mahfouz, M.R., et al., A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging, 2003. 22(12): p. 1561-74. Mahfouz, M.R., et al., Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images. J. Biomechanics, 2005. 38 : p. 229-239 Mameren, V.H., et al., Cervical spine motion in sagittal plane II position of segmental averaged instantaneous centers of rotation-a cineradiographic study.Spine, 1992.17(5):p. 467-474. Ngan, J.M., D.H. Chow, and A.D. Holmes, The kinematics and intra- and inter-therapist consistencies of lower cervical rotational manipulation. Med Eng Phys, 2005. 27(5): p. 395-401. Panjabi, M., et al., Three-dimensional movements of the upper cervical spine. Spine, 1988. 13(7): p. 726-30. Penney, G.P., et al., Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images. Med Phys, 2001. 28(6): p. 1024-32. Phillips, F.M. and S.R. Garfin, Cervical disc replacement. Spine, 2005. 30(17 Suppl): p. S27-33. Sahin, A., et al., Upper cervical vertebrae movement during intubating laryngeal mask, fibreoptic and direct laryngoscopy: a video-fluoroscopic study. Eur J Anaesthesiol, 2004. 21(10): p. 819-23. Selvik, G. r., 1989. Roentgen stereophotogrammetry. Acta Orthop. Scand. 60[Supplement]232, Simon, S., et al.,CT imaging techniques for describing motions of the cervicothoracic junction and cervical spine during flexion,extension,and cervical traction.Spine, 2006. 31(1):p. 44-50. Torzilli, P. A., Greenberg, R. L. and Insall, J., 1981. An in vivo biomechanical evaluation of anterior-posterior motion of the knee. J. Bone Jt. Surg., Am. Vol. 63-A, 960-968. Wang, S.F., C.C. Teng, and K.H. Lin, Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasound-based motion system. Man Ther, 2005. 10(1): p. 68-72. Wong, K.W., et al., Continuous dynamic spinal motion analysis. Spine, 2006. 31(4): p. 414-9. You, B.M., et al., In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging, 2001. 20(6): p. 514-25. Zheng, Y., M.S. Nixon, and R. Allen, Lumbar spine visualisation based on kinematic analysis from videofluoroscopic imaging. Med Eng Phys, 2003. 25(3): p. 171-9. Zuffi, S., et al., A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging, 1999. 18(10): p. 981-91. Kapandji, I.A. “The Physiology of the Joints”, 2nd edition, 1974. Nordin, Frankel, “Basic Biomechanics of the Musculoskeletal System”, 3rd edition, 2001. Magee, “Orthopedic Physical Assessment”, 3rd edition. I.A. KAPANDJI, “The Physiology of the joints”, 2nd edition 莊克士, “醫學影像物理學”, 合記圖書出版社, 2001 傅仰傑, “結合動態X光及電腦骨骼解剖模型量測人體膝關節之三維 運動”, 台灣大學醫學工程學研究所碩士論文, July 2003 蔡宗遠, “結合動態X光及電腦骨骼模型量測正常人與前十字韌帶 缺損患者之膝關節三維運動”,台灣大學醫學工程學研究 所碩士論文, July 2004 張智星, “Matlab程式設計與應用”, 清蔚科技股份有限公司, 2000 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28249 | - |
| dc.description.abstract | 人體脊椎是個複雜的結構,它保護脊髓以及傳遞頭顱與軀幹的重量至骨盆。脊椎的損傷可能傷及神經,甚至造成下半身癱瘓。因此,精確的三維動態量測人體脊椎運動學,可以對脊椎的研究、手術與治療提供相當程度的幫助。但是目前的量測方法比如皮膚標記、醫學影像或者試體實驗等,皆有其無法消除的誤差與限制。因此,本研究的目的在於結合三維電腦模型以及二維動態X光影像重建脊椎骨空間位置,以提供一準確的非侵入式的人體脊椎三維動態活體量測方法。
本研究使用雙平面動態X光量得頸關節運動影像,配合電腦斷層掃描,得到骨骼之立體模型,並且產生數位重建立體像素影像(Digitally reconstructed radiography),並使用相似度比較動態X光影像與數位重建立體像素影像,藉由最佳化方法控制模型位置,求得頸椎骨空間位置及方向。 本研究並且使用四段新鮮相連的豬頸椎骨(C1-C7),分別彎成不同姿態埋入水晶球並與石蠟封成剛體,進行電腦斷層掃瞄以得知水晶球與骨頭相對關係,之後以雙平面動態X光,搭配DLT(Direct linear transformation)以得到豬頸椎骨空間位置。實驗拍攝靜態影像與動態影像,另外由電腦斷層掃瞄(Computed tomography, CT)提供黃金準則(gold standard)比較得知精度完成驗證實驗。單平面與雙平面的比對精度也可以同時被本研究確立,並且測試不同最佳化手段以及解決頸椎骨在動態X光影像疊影(overlapping)問題並且改善精度。 本方法具有三維量測、活體量測、動態量測、非侵入式、準確量測並且可以避免皮膚移動誤差以及後續運算時間較短等優點。可以適用於量測人體三維頸關節運動學。 本研究量測四位正常人的頸椎骨活動,量測出在頭進行屈曲/伸展、旋轉、側彎等日常生活基本運動時的頸椎骨的運動,另外使用兩台數位攝影機量測出頭相對於軀幹的角度。並且對各節貢獻度相對於頭運動角度、其聯帶運動(coupled motion)、以及有限螺旋軸(finite helical axis)的移動軌跡製圖。 未來,希望能應用我們所發展的方法,量測不同關節及其他骨骼肌肉系統疾患,以利未來骨科、復健科、物理治療、職能治療、運動醫學、電腦輔助手術與人工關節設計等領域的進步。 | zh_TW |
| dc.description.abstract | The human spine is a complex structure. It protects spinal cord and transfer weight of head and trunk to pelvis. The spinal injury could affect nerve system, even cause paraplegia. Therefore, accurate 3-dimensional dynamic measurement of human spine kinematics could be helpful for spinal research, operation, and clinical management. However, present measurement techniques such as skin marker, medical imaging or in vitro studies have different kind of limitation. Therefore, the goal of this study is to combine 3-dimensional computer bone model and 2-dimensional fluoroscopic image to reconstruct the vertebra position, In order to provide an accurate, in vivo, non-invasive, 3-dimensional, dynamic measurement technique for human cervical spine.
A fluoroscopy system was used to capture the cervical spine movement. Computed tomography was also used to reconstruct the bone model and digitally reconstructed radiography (DRR). Similarity measurement was used to compare the DRR and fluoroscopic image to find the model position and orientation using optimization. The validation experiment used 4 fresh connected porcine cervical spine cadavers (C1-7), bent into 4 different statuses, and fixed them with crystal balls using paraffin. The relation between crystal balls and vertebrae were defined by the computed tomography. Direct linear transformation and bi-plane fluoroscopy was used to locate the position of crystal balls and vertebrae. Static and dynamic images were captured by the bi-plane fluoroscopy. And the gold standard was provided by computed tomography. The registration accuracy of single plane and bi-plane fluoroscopy were determined. 2 optimization technique was compared and provide an solution for overlapping image. 4 normal subjects were participated in our study. The dynamic motion of flexion/extension, rotation, side bending were measured. 2 digitally cameras was also used for the movement of head. The contribution of each vertebra, coupled motion, and the finite helical axis were plotted. In the future, the method we develop will be adopted in other joint components and be extended in studying various kinds of diseases. Thus, the application of our method is helpful for the progress in the fields of orthopedic, rehabilitation, physical therapy, occupational therapy, sports medicine, computer-aid surgery, and implements designs, etc… | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:03:34Z (GMT). No. of bitstreams: 1 ntu-96-R94548009-1.pdf: 3574338 bytes, checksum: 6eecd9005c35a1caa21e624c3d55b312 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 致謝……………………………………………………………………III
中文摘要………………………………………………………………IV 英文摘要………………………………………………………………V 圖目錄…………………………………………………………………iv 表目錄 ………………………………………………………………… v 第壹章 緒論 1 第一節 研究背景 1 第二節 頸椎之功能解剖構造 2 第三節 頸椎之運動學 6 第四節 文獻回顧 8 一、試體量測 9 二、活體量測 10 (一) 全頸椎量測 11 一、 立體攝影術 11 二、 超音波 11 三、 電子量角器 12 (二) 脊椎骨量測(醫學影像分析) 13 一、 傳統X光影像分析 13 二、 X光立體攝影術 14 三、 核磁共振掃瞄 15 四、 動態X光 16 五、 二維影像結合三維骨模型影像契合 16 六、 雙平面動態X光影像結合三維骨模型影像契合 19 第五節 研究目的 21 第貳章 實驗材料及流程 21 第一節 受試者 21 第二節 實驗設備 21 一、硬體設備 22 二、軟體設備 25 第三節 系統校正實驗流程 26 第四節 驗證實驗流程 26 第五節 臨床實驗流程 27 第叁章 系統成像及校正 29 第一節 系統成像原理 30 第二節 校正方法 32 一、影像平面位置 32 二、動態X光系統參數 34 三、DLT系統校正 36 第三節 系統校正結果 39 一、影像平面校正結果 39 二、動態X光系統參數校正結果 40 三、DLT系統校正結果 40 第肆章 模型建立與資料分析 42 第一節 三維模型 42 一、立體骨骼模型之建立 42 第二節 關節運動學描述 44 一、關節座標系統 44 二、螺旋軸定理 46 第三節 模型投影輪廓 47 第四節 最佳化方法 48 第五節 模擬動態X光投影介面 53 第伍章 驗證結果 57 第一節 實驗驗證 57 一、驗證結果 58 (1) 單平面比對豬脊椎骨在廣域座標系統下的誤差: 58 (2) 雙平面比對豬脊椎骨在廣域座標系統下的誤差: 58 (3) 單平面比對豬脊椎骨在局部座標系統下的誤差: 59 (4) 雙平面比對豬脊椎骨在局部座標系統下的誤差: 60 (5) 不同拍攝角度下的誤差 60 (6) 使用模擬退火法尋最佳解 61 (7) 使用模擬退火法並且保留上一塊頸椎骨的DRR影像 61 第二節 討論 62 (1) 驗證結果 62 (2) 單平面與雙平面之比較 63 (3) 最佳化手段比較 63 (4) 影像疊影(overlapping)之討論 63 第陸章 頸椎關節自主運動 65 第一節 頸關節角度 66 一、受試者進行屈曲/伸展動作 67 二、受試者進行旋轉動作 68 三、受試者進行側彎動作 69 第二節 頸椎骨的聯帶運動 69 一、受試者進行屈曲/伸展動作 69 二、受試者進行旋轉動作 70 三、受試者進行側彎動作 71 第三節 以螺旋軸定理觀察自主運動 72 一、受試者進行屈曲/伸展動作 73 第四節 討論 75 一、頸關節角度 75 二、頸椎骨的聯帶運動 76 三、以螺旋軸定理觀察自主運動 77 第柒章 總結 79 第捌章 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 影像疊影 | zh_TW |
| dc.subject | 動態X光 | zh_TW |
| dc.subject | 數位重建立體像素影像 | zh_TW |
| dc.subject | 頸關節運動學 | zh_TW |
| dc.subject | DLT | zh_TW |
| dc.subject | digitally reconstructed radiography | en |
| dc.subject | fluoroscopy | en |
| dc.subject | overlapping | en |
| dc.subject | direct linear transformation | en |
| dc.subject | cervical spine kinematics | en |
| dc.title | 結合動態X光與立體像素骨模型量測活體三維頸椎骨運動 | zh_TW |
| dc.title | In Vivo Measurement of 3-D Kinematics of the Cervical Spine Using Fluoroscopy with Voxel-Based Bone Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴達明,陳文斌,王至弘 | |
| dc.subject.keyword | 動態X光,數位重建立體像素影像,頸關節運動學,DLT,影像疊影, | zh_TW |
| dc.subject.keyword | fluoroscopy,digitally reconstructed radiography,cervical spine kinematics,direct linear transformation,overlapping, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
